refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1219 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE14929
Myocardial expression data from gnotobiotic wild-type and Ppara-/- mice
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon

Description

Germ free (GF) and conventionalized (CONV-D) wild-type C57Bl/6 male mice in the CARB-fed, 24h fasted, and 30d trained states; plus GF and CONV-D CARB-fed Ppara-/- mice. CARB-fed indicates a standard polysaccharide-rich mouse chow diet.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-14929

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE64750
Lung expression data from highly pathogenic H5N1 virus infected and uninfected mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Susceptible and Resistant mouse strain, e.g. DBA/2J and C57BL/6J respectively, were inoculated with a highly pathogenic H5N1 influenza A virus (A/Hong Kong/213/2003) for 72 hours.

Publication Title

Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.

Alternate Accession IDs

E-GEOD-64750

Sample Metadata Fields

Sex

View Samples
accession-icon GSE10964
Virus-Induced Airway Disease in Mice (C57BL/6J, d21/d49)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.

Publication Title

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Alternate Accession IDs

E-GEOD-10964

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE16210
Expression data of Naive Treg, allogeneic tumor-activated Treg, and GVHD-activated Treg cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Regulatory T (Treg) cells play an important role in the induction and maintenance of peripheral tolerance. Treg cells also suppress a variety of other immune responses, including anti-tumor and alloimmune responses. We have previously reported that tumor-activated Treg cells express granzyme B and that granzyme B is important for Treg cell-mediated suppression of anti-tumor immune responses (GSE13409). Here, we report that allogeneic mismatch also induces the expression of granzyme B. Granzyme B-deficient mice challenged with fully mismatched allogeneic P815 mastocytoma cells have markedly improved survival compared to WT and other granzyme- or perforin-deficient mice, suggesting an immunoregulatory role for granzyme B in this setting. Treg cells harvested from the tumor environment of P815-challenged mice express granzyme B. Treg cells also express granzyme B in vitro during mixed lymphocyte reactions and in vivo in a mouse model of graft-versus-host disease (GVHD). However, in contrast to findings from our previously published tumor model, granzyme B is not required for the suppression of effector T cell (Teff) proliferation in in vitro Treg suppression assays stimulated by either Concanavalin A or allogeneic antigen presenting cells. Additionally, in an ex vivo assay, sort-purified in vivo-activated CD4+Foxp3+ Treg cells from mice with active GVHD -- under conditions known to induce granzyme B expression in Treg cells -- suppressed Teff cell proliferation in a granzyme B-independent manner. Adoptive transfer of naive granzyme B-deficient CD4+CD25+ Treg cells into a mouse model of GVHD rescued hosts from lethatlity equivalently to naive wild-type Treg cells. Serum analysis of GVHD-associated cytokine production in these recipients also demonstrated that Treg cells suppressed production of IL-2, IL-4, IL-5, GM-CSF, and IFN-gamma in a granzyme B-independent manner. In order to determine whether the context in which Treg cells are activated alters the intrinsic properties of Treg cells, we used Foxp3 reporter mice to obtain gene expression profiles of CD4+Foxp3+ Treg cells purifed from naive resting spleens, spleens from mice with acute GVHD, and from ascites fluid of mice challenged intraperitoneally with allogeneic P815 tumor cells. Unsupervised analyses revealed distinct activation signatures of Treg cells among the 3 experimental groups. Taken together, these findings demonstrate that granzyme B is not required for Treg cell-mediated suppression of GVHD, which is in contrast to what we have previously reported for Treg cell function in the setting of tumor challenge. Cell intrinsic differences could partially account for these differential phenotypes. These data also suggest the therapeutic potential of targeting specific Treg cell suppressive functions in order to segregate GVHD and graft-versus-tumor effector functions.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-16210

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21368
Myocardial expression data from ketogenic diet-fed mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Specific pathogen free wild-type C57Bl/6 male mice fed ketogenic diet (Bio-Serv AIN-76-A) for 4 weeks

Publication Title

Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment.

Alternate Accession IDs

E-GEOD-21368

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE34917
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Alternate Accession IDs

E-GEOD-34917

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10365
Expression Data from NKDxIL15tg and IL15 tg NK cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

NK cells from NKDxIL15tg mice spleens and bone marrow were purified by FACS. NK cells from IL15tg mice spleens were purified by FACS.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-10365

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117051
Limited macrophage dynamics in progressing or regressing murine atherosclerotic plaques
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Previous studies using particle labeled monocytes to assess recruitment into tissues have demonstrated that bead labeling did not affect the ability of monocytes to enter tissues (Tacke et al., 2007), and particle uptake did not activate p38/MAPK or NFB pathways (Yates and Russell, 2005). However, the possibility remains that bead labeling could have effects on global gene expression profiles. To address this prospect, we performed gene expression profiling of classical and non-classical monocytes that had taken up latex particle in vivo against cells from the same mouse that had not taken up particles.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-117051

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE24289
Expression data from differentiating ES cells expressing miR-200c and miR-141
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

ES cells express the miR-200 family which becomes down-regulated during the course of differentiation in serum. We generated an ES cell line which expresses miR-200c and miR-141 upon addition of doxycycline.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-24289

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE25737
Geminin-regulated genes during neural fate acquisition of mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Formation of the complex vertebrate nervous system begins when pluripotent cells of the early embryo are directed to acquire a neural fate. Although cell intrinsic controls play an important role in this process, the molecular nature of this regulation is not well defined. Here we assessed the role for Geminin, a nuclear protein expressed in embryonic cells, in neural fate acquisition from mouse embryonic stem (ES) cells. While Geminin knockdown does not affect the ability of ES cells to maintain or exit pluripotency, we found that it significantly impairs their ability to acquire a neural fate. Conversely, Geminin overexpression promotes neural gene expression, even in the presence of growth factor signaling that antagonizes neural transcriptional responses. These data demonstrate that Geminins activity contributes to mammalian neural cell fate acquisition. We investigated the mechanistic basis of this phenomenon and found that Geminin maintains a hyperacetylated and open chromatin conformation at neural genes. Interestingly, recombinant Geminin protein also rapidly alters chromatin acetylation and accessibility even when Geminin is combined with nuclear extract and chromatin in vitro. These findings define a novel activity for Geminin in regulation of chromatin structure. Together, these data support a role for Geminin as a cell intrinsic regulator of neural fate acquisition that promotes expression of neural genes by regulating chromatin accessibility and histone acetylation.

Publication Title

Geminin promotes neural fate acquisition of embryonic stem cells by maintaining chromatin in an accessible and hyperacetylated state.

Alternate Accession IDs

E-GEOD-25737

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0