A soy diet worsens the progression of an inherited form of hypertrophic cardiomyopathy (HCM) in male mice when compared to casein-fed mice. Females are largely resistant to this diet effect and better preserve cardiac function. We hypothesized that the abundant phytoestrogens found in soy are mainly responsible for this diet-dependent phenotype. Indeed, feeding male mice a phytoestrogen-supplemented casein-based diet can recapitulate the negative outcome seen when male mice are fed a standard soy-based diet.
Estrogenic compounds are not always cardioprotective and can be lethal in males with genetic heart disease.
Sex, Specimen part
View SamplesAn alternative promoter of the PGC-1alpha gene gives rise to three new PGC-1alpha isoforms refered to as PGC-1a2 (A2), PGC-1a3 (A3) and PGC-1a4 (A4). The proximal PGC-1 alpha promotor transcribes the canonical PGC-1 alpha which is refered to as PGC-1a1 (A1).G1/G2/G3 samples refer to the Green fluorescent protein (GFP) control samples used in this experiment. Forced expression of the PGC-1a4 isoform results in muslce hypertrophy associated with increased IGF-1 signaling and repression of myostatin signaling.
A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy.
Specimen part
View SamplesGenetic comparison between periosteal skeletal stem cells and bone marrow skeletal stem cells in mice
Comparative analysis of gene expression identifies distinct molecular signatures of bone marrow- and periosteal-skeletal stem/progenitor cells.
Specimen part
View SamplesThe goal of the study was to identify the genes which are regulated by Interleukin-2 in the CD4+ T cells of the scurfy mice during regulatory T-cell deficiency. Scurfy (Sf) mice bear a mutation in the forkhead box P3 (Foxp3) transcription factor, lack regulatory T-cells (Treg), develop multi-organ inflammation, and die prematurely. The major target organs affected are skin, lungs, and liver. Sf mice lacking the Il2 gene (Sf.Il2-/-), despite devoid of Treg, did not develop skin and lung inflammation, but the inflammation in liver, pancreas, submandibular gland and colon remained. Genome-wide microarray analysis revealed hundreds of genes were differentially regulated among Sf, Sf.Il2-/-, and B6 CD4+ T-cells but the most changes were those encoding receptors for trafficking/chemotaxis/retention and lymphokines. Our study suggests that IL-2 controls the skin and lung inflammation in Sf mice in an apparent "organ-specific" manner through two novel mechanisms: by regulating the expression of genes encoding receptors for T-cell trafficking/chemotaxis/retention and by regulating Th2 cell expansion and lymphokine production. Thus, IL-2 is a master regulator for multi-organ inflammation and an underlying etiological factor for various diseases associated with skin and lung inflammation.
IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation.
Sex, Specimen part
View SamplesZebrafish is ideal model organism to study myelination and demyelination. We could use this model to screen demylination relative genes and provide a new idea for clinic therapy.
Down-regulation of interleukin 7 receptor (IL-7R) contributes to central nervous system demyelination.
Specimen part
View SamplesA congenic mouse line was constructed by introgressing a C3H chromosome 9 region harboring Ath29 into the C57BL/6 apoE-deficient background. RNA was extracted from aorta using a QIAGEN kit . Total RNA was pooled in an equal amount from 3 mice for each group. Standard Affymetrix procedures were performed using 8ug of total RNA.
Characterization of Ath29, a major mouse atherosclerosis susceptibility locus, and identification of Rcn2 as a novel regulator of cytokine expression.
Disease, Disease stage
View SamplesBackground
Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.
Specimen part
View SamplesDynamic regulation of histone methylation by methyltransferases and demethylases plays a central role in regulating the fate of embryonic stem (ES) cells. The histone H3K9 methyltransferase KMT1E, formerly known as ESET or Setdb1, is essential to embryonic development as the ablation of the Setdb1 gene results in peri-implantation lethality and prevents the propagation of ES cells. However, Setdb1- null blastocysts do not display global changes in H3K9 methylation or DNA methylation, arguing against a genome- wide defect. Here we show that conditional deletion of the Setdb1 gene in ES cells results in the upregulation of lineage differentiation markers, especially trophectoderm-specific factors, similar to effects observed upon loss of Oct3/4 expression in ES cells. We demonstrate that KMT1E deficiency in ES cells leads to a decrease in histone H3K9 methylation at and derepression of trophoblast-associated genes such as Cdx2. Furthermore, we find genes that are derepressed upon Setdb1 deletion to overlap with known targets of polycomb mediated repression, suggesting that KMT1E mediated H3K9 methylation acts in concert with polycomb controlled H3K27 methylation. Our studies thus demonstrate an essential role for KMT1E in the control of developmentally regulated gene expression programs in ES cells.
KMT1E mediated H3K9 methylation is required for the maintenance of embryonic stem cells by repressing trophectoderm differentiation.
Specimen part, Treatment
View SamplesBackground and Aims: In the interleukin-10-deficient (Il10-/-) mouse model of IBD, 10 quantitative trait loci (QTL) have been shown to be associated with colitis susceptibility by linkage analyses on experimental crosses of highly susceptible C3H/HeJBir (C3Bir)-Il10-/- and partially resistant C57BL/6J (B6)-Il10-/- mice. The strongest locus (C3Bir-derived cytokine deficiency-induced colitis susceptibility [Cdcs]1 on Chromosome [Chr] 3) controlled multiple colitogenic subphenotypes and contributed the vast majority to the phenotypic variance in cecum and colon. This was demonstrated by interval-specific Chr 3 congenic mice wherein defined regions of Cdcs1 from C3Bir or B6 were bred into the IL-10-deficient reciprocal background and altered the susceptible or resistant phenotype. Furthermore, this locus likely acts by inducing innate hypo- and adaptive hyperresponsiveness, associated with impaired NFB responses of macrophages. The aim of the present study was to dissect the complexity of Cdcs1 by further development and characterization of reciprocal Cdcs1 congenic strains and to identify potential candidate genes in the congenic interval. Material and Methods: In total, 15 reciprocal congenic strains were generated from Il10-/- mice of either C3H/HeJBir or C57BL/6J backgrounds by 10 cycles of backcrossing. Colitis activity was monitored by histological grading. Candidate genes were identified by fine mapping of congenic intervals, sequencing, microarray analysis and a high-throughput real-time RT-PCR approach using bone marrow-derived macrophages. Results: Within the originally identified Cdcs1-interval, three independent regions were detected that likely contain susceptibility-determining genetic factors (Cdcs1.1, Cdcs1.2, and Cdcs1.3). Combining results of candidate gene approaches revealed Fcgr1, Cnn3, Larp7, and Alpk1 as highly attractive candidate genes with polymorphisms in coding or regulatory regions and expression differences between susceptible and resistant mouse strains. Conclusions: Subcongenic analysis of the major susceptibility locus Cdcs1 on mouse chromosome 3 revealed a complex genetic structure. Candidate gene approaches revealed attractive genes within the identified regions with homologs that are located in human susceptibility regions for IBD.
Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity.
Sex, Specimen part
View SamplesBackground: Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gaq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gaq acts as an adaptor protein that facilitates PKCz-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in Gq-dependent signaling in cardiac cells.
Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts.
Sex, Age, Specimen part
View Samples