Aims: We investigate sex differences and the role of oestrogen receptor beta (ERbeta) in a mouse model of pressure overload-induced myocardial hypertrophy. Methods and results: We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta-/-) C57Bl6 mice. All mice were characterised by echocardiography and haemodynamic measurements and were sacrificed nine weeks after surgery. Left ventricular (LV) samples were analysed by microarray profiling, real-time RT-PCR and histology. After nine weeks, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. These sex differences were abolished in ERbeta-/- mice. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that male WT hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than female hearts. ERbeta-/- mice exhibited a different transcriptome. Induction of pro-apoptotic genes after TAC occurred in ERbeta-/- mice of both sexes with a stronger expression in ERbeta-/- males. Histological analysis revealed, that cardiac fibrosis was more pronounced in male WT TAC than in female mice. This was abolished in ERbeta-/- mice. Apoptosis was significantly induced in both sexes of ERbeta-/- TAC mice, but it was most prominent in males. Conclusion: Female sex offers protection against ventricular chamber dilation in the TAC model. Both the female sex and ERbeta attenuate the development of fibrosis and apoptosis; thus slowing the progression to heart failure.
Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload.
Sex, Age, Specimen part
View Samplesgenes regualted by LPS or LPS+cAMP stimulation in BMDCs
Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein.
Specimen part
View SamplesThe role of PDK1 on mammary tumorigenesis and its interaction with PPARdelta, was assessed. Transgenic mice were generated in which PDK1 was expressed in the mammary epithelium.
PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis.
Specimen part, Treatment
View SamplesThe thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. To identify alternate regeneration pathways in the thymus, we performed an unbiased transcriptome analysis of the non-hematopoietic (CD45-) stromal cell compartment of the thymus, which is less sensitive to thymic damage compared to the CD45+ hematopoietic compartment.
Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Adult rat bones maintain distinct regionalized expression of markers associated with their development.
Sex, Specimen part, Treatment
View SamplesAlthough Notch signaling has been clearly implicated in lymphoid differentiation, its role in myeloid lineages differentiation is unclear.
Notch signaling specifies megakaryocyte development from hematopoietic stem cells.
No sample metadata fields
View SamplesPilot study
Adult rat bones maintain distinct regionalized expression of markers associated with their development.
Sex, Specimen part
View SamplesThis data series was used for two separate studies. The initial study was aimed to idenify expression changes brought about by the Cecr2Gt45Bic mutation during neural closure. The study included two different strains, BALB/cCrl in which Cecr2GT45Bic shows a neural tube defect phenotype and FVB/N in which Cecr2Gt45Bic does not manifest neural closure defects. The second was to idenify strain specific expression differences present during neural closure of the mouse embryo between BALB/cCrl and FVB/N in order to identify candidate modifiers of the Cecr2Gt45Bic neural tube defect. Relevant abstracts are included below.
Strain-specific modifier genes of Cecr2-associated exencephaly in mice: genetic analysis and identification of differentially expressed candidate genes.
Sex, Specimen part
View SamplesBackground and Aims: In the interleukin-10-deficient (Il10-/-) mouse model of IBD, 10 quantitative trait loci (QTL) have been shown to be associated with colitis susceptibility by linkage analyses on experimental crosses of highly susceptible C3H/HeJBir (C3Bir)-Il10-/- and partially resistant C57BL/6J (B6)-Il10-/- mice. The strongest locus (C3Bir-derived cytokine deficiency-induced colitis susceptibility [Cdcs]1 on Chromosome [Chr] 3) controlled multiple colitogenic subphenotypes and contributed the vast majority to the phenotypic variance in cecum and colon. This was demonstrated by interval-specific Chr 3 congenic mice wherein defined regions of Cdcs1 from C3Bir or B6 were bred into the IL-10-deficient reciprocal background and altered the susceptible or resistant phenotype. Furthermore, this locus likely acts by inducing innate hypo- and adaptive hyperresponsiveness, associated with impaired NFB responses of macrophages. The aim of the present study was to dissect the complexity of Cdcs1 by further development and characterization of reciprocal Cdcs1 congenic strains and to identify potential candidate genes in the congenic interval. Material and Methods: In total, 15 reciprocal congenic strains were generated from Il10-/- mice of either C3H/HeJBir or C57BL/6J backgrounds by 10 cycles of backcrossing. Colitis activity was monitored by histological grading. Candidate genes were identified by fine mapping of congenic intervals, sequencing, microarray analysis and a high-throughput real-time RT-PCR approach using bone marrow-derived macrophages. Results: Within the originally identified Cdcs1-interval, three independent regions were detected that likely contain susceptibility-determining genetic factors (Cdcs1.1, Cdcs1.2, and Cdcs1.3). Combining results of candidate gene approaches revealed Fcgr1, Cnn3, Larp7, and Alpk1 as highly attractive candidate genes with polymorphisms in coding or regulatory regions and expression differences between susceptible and resistant mouse strains. Conclusions: Subcongenic analysis of the major susceptibility locus Cdcs1 on mouse chromosome 3 revealed a complex genetic structure. Candidate gene approaches revealed attractive genes within the identified regions with homologs that are located in human susceptibility regions for IBD.
Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity.
Sex, Specimen part
View SamplesDown syndrome is the most common form of genetic mental retardation. How Trisomy 21 causes mental retardation remains unclear and its effects on adult neurogenesis have not been addressed. To gain insight into the mechanisms causing mental retardation we used microarrays to investigate gene expression differences between Ts1Cje (a mouse model of Down syndrome) and C57BL/6 littermate control neurospheres. The neurospheres were generated from neural stem cells and progenitors isolated from the lateral walls of the lateral ventricles from adult mice.
Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of Down syndrome.
Sex, Disease
View Samples