This study revealed pathogenic role of pre-BCR-independent SYK activation in high-risk B-ALL.
Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia.
Specimen part
View SamplesThe role of the renin-angiotensin system in chronic kidney disease involves multiple peptides and receptors. Exerting antipodal pathophysiological mechanisms, renin inhibition and AT1 antagonism ameliorate renal damage.
AT1 antagonism and renin inhibition in mice: pivotal role of targeting angiotensin II in chronic kidney disease.
Age, Specimen part, Treatment
View SamplesIn eukaryotes, regulation of mRNA translation enables a fast, localized and finely tuned expression of gene products. Within the translation process, the first stage of translation initiation is most rigorously modulated by the actions of eukaryotic initiation factors (eIFs) and their associated proteins. These 11 eIFs catalyze the joining of the tRNA, mRNA and rRNA into a functional translation complex. Their activity is influenced by a wide variety of extra- and intracellular signals, ranging from global, such as hormone signaling and unfolded proteins, to specific, such as single amino acid imbalance and iron deficiency. Their action is correspondingly comprehensive, in increasing or decreasing recruitment and translation of most cellular mRNAs, and specialized, in targeting translation of mRNAs with regulatory features such as a 5 terminal oligopyrimidine tract (TOP), upstream open reading frames (uORFs), or an internal ribosomal entry site (IRES). In mammals, two major pathways are linked to targeted mRNA translation. The target of rapamycin (TOR) kinase induces translation of TOP and perhaps other subsets of mRNAs, whereas a family of eIF2 kinases does so with mRNAs containing uORFs or an IRES. TOR targets translation of mRNAs that code for proteins involved in translation, an action compatible with its widely accepted role in regulating cellular growth. The four members of the eIF2 kinase family increase translation of mRNAs coding for stress response proteins such as transcription factors and chaperones. Though all four kinases act on one main substrate, eIF2, published literature demonstrates both common and unique effects by each kinase in response to its specific activating stress. This suggests that the activated eIF2 kinases regulate the translation of both a global and a specific set of mRNAs. Up to now, few studies have attempted to test such a hypothesis; none has been done in mammals.
eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver.
No sample metadata fields
View SamplesLiver undergoes both size increase and differentiation during postnatal period, which in mice is approximately first 30 days. The mechanisms of simultaneous postnatal liver cell proliferation and maturation are not clear. In these experiments, role of yes associated protein (Yap), the downstream effector of Hippo Kinase signaling pathway was investigated.
Yes-associated protein is involved in proliferation and differentiation during postnatal liver development.
Specimen part
View SamplesPreviously we reported that a recombinant vaccinia virus (VACV) carrying a light-emitting fusion gene enters, replicates in, and reveals the locations of tumors in mice. A new recombinant VACV, GLV-1h68, as a simultaneous diagnostic and therapeutic agent, was constructed by inserting three expression cassettes (encoding Renilla luciferase-green fluorescent protein (RUC-GFP) fusion, b-galactosidase, and b-glucuronidase) into the F14.5L, J2R (encoding thymidine kinase, TK), and A56R (encoding hemagglutinin, HA) loci of the viral genome, respectively. Intravenous (i.v.) injections of GLV-1h68 (1 107 pfu/mouse) into nude mice with established (500 mm3) subcutaneous (s.c.) GI-101A human breast tumors were used to evaluate its toxicity, tumor targeting specificity and oncolytic efficacy. GLV-1h68 demonstrated an enhanced tumor targeting specificity and much reduced toxicity compared to its parental LIVP strains. The tumors colonized by GLV-1h68 exhibited growth, inhibition, and regression phases followed by tumor eradication within 130 days in 95% of the mice tested. Tumor regression in live animals was monitored in real time based on decreasing light emission, hence demonstrating the concept of a combined oncolytic virus-mediated tumor diagnosis and therapy system. Transcriptional profiling of regressing tumors based on a mouse-specific platform revealed gene expression signatures consistent with immune defense activation, inclusive of interferon stimulated genes (STAT-1 and IRF-7), cytokines, chemokines and innate immune effector function. These findings suggest that immune activation may combine with viral oncolysis to induce tumor eradication in this model, providing a novel perspective for the design of oncolytic viral therapies for human cancers.
Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus.
No sample metadata fields
View SamplesDiabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. When compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.
IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.
Treatment, Time
View SamplesExpression profiling of normal NIH3T3 and transformed NIH3T3 K-ras cell lines grown for 72 hours in optimal glucose availability (25 mM glucose) or low glucose availability (1 mM). Low glucose induces apoptosis in transformed cells as compared to normal ones.
Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.
Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation.
Cell line, Time
View SamplesAnalysis of Early Myogenesis Reveals an Extensive Set of Transcriptional Regulators Whose Knock-down Can Inhibit Differentiation
Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation.
Cell line, Time
View Samples