refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE17348
Effects of prostate cancer cells on osteoblasts
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Primary murine osteoblasts were isolated form the calvariae of newborn mice. 10 days after the addition of ascorbic acid (50 g/ml) and -glycerophosphate (10 mM), cells were serum-starved over night and then incubated for 6 hours with condtioned medium of MDA-PCa2b cells or conditioned medium of PC-3 cells

Publication Title

Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.

Alternate Accession IDs

E-GEOD-17348

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51686
Fracture healing in osteoporotic mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Genome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice.

Publication Title

Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.

Alternate Accession IDs

E-GEOD-51686

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE61299
Sharpin controls differentiation and cytokine production of mesenchymal bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The cytosolic protein Sharpin is as a component of the linear ubiquitin chain assembly complex (LUBAC), which regulates NF-B signaling in response to specific ligands. Its inactivating mutation in Cpdm (chronic proliferative dermatitis mutation) mice causes multi-organ inflammation, yet this phenotype is not transferable into wildtype mice by hematopoietic stem cell transfer. Recent evidence demonstrated that Cpdm mice additionally display low bone mass, but the cellular and molecular causes of this phenotype remained to be established. Here we have applied non-decalcified histology together with cellular and dynamic histomorphometry to perform a thorough skeletal phenotyping of Cpdm mice. We show that Cpdm mice display trabecular and cortical osteopenia, solely explained by impaired bone formation, whereas osteoclastogenesis is unaffected. We additionally found that Cpdm mice display a severe disturbance of articular cartilage integrity in the absence of joint inflammation, supporting the concept that Sharpin-deficiency affects mesenchymal cell differentiation. Consistently, Cpdm mesenchymal cells displayed reduced osteogenic capacitiy ex vivo, yet this defect was not associated with impaired NF-B signaling. A molecular comparison of wildtype and Cpdm bone marrow cell populations further revealed that Cpdm mesenchymal cells produce higher levels of Cxcl5 and lower levels of IL1ra. Collectively, our data demonstrate that skeletal defects of Cpdm mice are not caused by chronic inflammation, but that Sharpin is as a critical regulator of mesenchymal cell differentiation and gene expression. They additionally provide an alternative molecular explanation for the inflammatory phenotype of Cpdm mice and the absence of disease transfer by hematopoetic stem cell transplantation.

Publication Title

Sharpin Controls Osteogenic Differentiation of Mesenchymal Bone Marrow Cells.

Alternate Accession IDs

E-GEOD-61299

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0