refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 276 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE12075
The impact of microRNAs on protein output
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The impact of microRNAs on protein output.

Alternate Accession IDs

E-GEOD-12075

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12003
4 days cultured progenitors and 8 days cultured mature neutrophils from WT vs miR-223 null neutrophils
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

This array analysis is to study developmental time course of the regulation of target messages expression during culture of murine neutrophils versus miR-223 null neutrophils. Culture media was SILAC-IMDM for MS analysis.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-12003

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11973
Wild-type cultured neutrophils versus miR-223 null cultured neutrophils
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This array analysis is to study the regulation of target messages expression in in vitro cultured murine neutrophils versus miR-223 null neutrophils. Culture media was SILAC-IMDM for MS analysis.

Publication Title

The impact of microRNAs on protein output.

Alternate Accession IDs

E-GEOD-11973

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12001
Wild-type neutrophils and miR-223 null neutrophils
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This array analysis is to study the regulation of target messages expression in murine neutrophils versus miR-223 null neutrophils.

Publication Title

The impact of microRNAs on protein output.

Alternate Accession IDs

E-GEOD-12001

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38850
Expression profiling of mouse embryonic stem cells (ESCs) (cell line V6.5, 129SvJae/C57B6 F1 background), and mouse ESC-derived Neural Precursor Cells (NPCs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

ESCs and NPCs are two setm cell types which rely on expression of the transcription factor Sox2. We profilled gene expression in ESCs and NPCs to correlate genome-wide Sox2 ChIP-Seq data in these cells with expression of putative targets

Publication Title

SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.

Alternate Accession IDs

E-GEOD-38850

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23925
Gene expression in germinal center light zone, dark zone, and nave B cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Microarrays of gene expression in mouse germinal center B cells photoactivated in the light zone or dark zone, and of nave cells for comparison.

Publication Title

Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter.

Alternate Accession IDs

E-GEOD-23925

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12991
Isolation of single miRNA-expressing cells from zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The goal of the project was to isolate single miRNA-expressing cells labelled by GFP reporter genes under the control of endogenous miRNA promoters and analyze expression levels of miRNA target genes in these cells. GFP-positive miRNA-expressing cells and GFP-negative cells from the rest of the embryos were purified at the same developmental stage to the cellular resolution using fluorescent activated cell sorting (FACS). Focus was on regulation by miR-206 and miR-133 in the developing somites and miR-124 in the developing central nervous system. Comparison of wild-type embryos and those lacking miRNAs revealed predicted

Publication Title

Coherent but overlapping expression of microRNAs and their targets during vertebrate development.

Alternate Accession IDs

E-GEOD-12991

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61434
Lineage reprogramming of adult mouse liver cells and B-lymphocytes to neural stem-like cells using defined factors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells.

Alternate Accession IDs

E-GEOD-61434

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30920
Transcription-associated Loading and Translocation of Condensin II on Chromosome Arms in Embryonic Stem Cells (RNA)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

The precise control of gene expression programs is critical for maintenance of cell state in emryonic stem cells. Cohesin has been shown to play an important role in maintaining gene expression programs by contributing to DNA loops between enhancers and promoters of active genes. The influence of condensin on gene expression is not well understood.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-30920

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE61433
Lineage reprogramming of adult mouse liver cells and B-lymphocytes to neural stem-like cells using defined factors [expression array]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The overexpression of transcription factors Oct4, Sox2, Klf4, and c-Myc reprograms a somatic nucleus to one that is transcriptionally and epigenetically indistinguishable from an embryonic stem (ES) cell. However, it is still unclear if transcription factors can completely convert the nucleus of a differentiated cell into that of a distantly related cell type such that it maintains complete transcriptional and epigenetic reprogramming in the absence of exogenous factor expression. To test this idea, we screened a library of doxycycline-inducible vectors encoding neural stem cell (NSC)-expressed genes and found that stable, self-maintaining NSC-like cells could be induced under defined growth conditions after transduction of transcription factors. These induced NSCs (iNSCs) were characterized in the absence of exogenous factor induction and were shown to be transcriptionally, epigenetically, and functionally similar to endogenous embryonic cortical NSCs. Importantly, iNSCs could be generated from multiple adult cell types including liver cells and B-cells with genetic rearrangements. Our results show that self-maintaining proliferative neural cells can be induced from non-ectodermal cells by expressing specific combinations of transcription factors.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-61433

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0