Target genes of Fbxl10 during 3T3-L1 adipogenesis was analyzed
The FBXL10/KDM2B scaffolding protein associates with novel polycomb repressive complex-1 to regulate adipogenesis.
Cell line, Treatment
View SamplesThe significant changes of hematopoietic cells induced by Xbp1S expression indicate that there is global alteration in gene expression. UPR induces transcription of Xbp1, and phosphorylation of the ER transmembrane kinase IRE1 initiates UPR-mediated mRNA splicing of Xbp1, resulting in the production of Xbp1S, an active form of a basic leucine zipper transcription factor. In the present study, Xbp1S retrovirus vector infected 32cl3 cells show cell cycle arrest and myeloid differentiation. Xbp1S may modulate important genes of differentiation and the cell cycle.
No associated publication
Specimen part
View SamplesT cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye.
No associated publication
Sex, Specimen part
View SamplesThroughout postnatal life in mammals, neural stem cells (NSCs) are located in the subventricular zone (SVZ) of the lateral ventricles. The greatest diversity of neuronal and glial lineages they generate occurs during early postnatal life in a region-specific manner. In order to evaluate potential heterogeneity in the NSC pool, we microdissected the dorsal and lateral SVZ at different postnatal ages and isolated NSCs and their immediate progeny based on their expression of Hes5-EGFP/Prominin1 and Ascl1-EGFP, respectively. Whole genome comparative transcriptome analysis revealed transcriptional regulators as major hallmarks that sustain postnatal SVZ regionalization. Manipulation of single genes encoding for locally enriched transcription factors influenced NSC specification indicating that the fate of regionalized postnatal SVZ NSCs can be readily modified . These findings reveal functional heterogeneity of NSCs in the postnatal SVZ and provide targets to recruit region-specific lineages in regenerative contexts.
Transcriptional Hallmarks of Heterogeneous Neural Stem Cell Niches of the Subventricular Zone.
Specimen part
View SamplesZebrafish (Danio rerio) were obtained from the Zebrafish Research Facility maintained in the Center for Environmental Biotechnology at the University of Tennessee. Fish husbandry, spawning, and experimental procedures were conducted with approval from the University of Tennessee Institutional Animal Care and Use Committee (Protocol #1690-1007). Water for holding fish and conducting experiments (hereafter referred to as fish water) consisted of MilliQ water (Millipore, Bedford, MA) with ions added: 19 mg/L NaHCO3, 1 mg/L sea salt (Instant Ocean Synthetic Sea Salt, Mentor, OH), 10 mg/L CaSO4, 10 mg/L MgSO4, 2 mg/L KCl. Embryos were obtained by spawning adult fish with no history of contaminant exposure. Fertilization of embryos took place at the same time ( 15 min.), such that larvae used in experiments were of similar age at the time of exposure. All activities (maintenance of adult fish, spawning, and experiments) were conducted in an environmental chamber with a temperature of 27 1 C and 14:10h light:dark photoperiod.
Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of Cyanobacteria.
No sample metadata fields
View SamplesDifferential gene expression of cerebral cortex might be responsible for distinct neurovascular developments between different mouse strains
A novel genetic locus modulates infarct volume independently of the extent of collateral circulation.
Sex, Specimen part
View SamplesAtrial fibrillation (AF) is a progressive arrhythmia for which current therapy is inadequate. During AF, rapid stimulation causes atrial remodeling that promotes further AF. The cellular signals that trigger this process remain poorly understood, however, and elucidation of these factors would likely identify new therapeutic targets. We have previously shown that immortalized mouse atrial (HL-1) myocytes subjected to 24 hr of rapid stimulation in culture undergo remodeling similar to that seen in animal models of atrial tachycardia (AT) and human AF. This preparation is devoid of confounding in vivo variables that can modulate gene expression (e.g., hemodynamics). Therefore, we investigated the transcriptional profile associated with early atrial cell remodeling. RNA was harvested from HL-1 cells cultured for 24 hr in the absence and presence of rapid stimulation and subjected to microarray analysis. Data were normalized using Robust Multichip Analysis (RMA), and genes exhibiting significant differential expression were identified using the Significance Analysis of Microarrays (SAM) method. Using this approach, 919 genes were identified that were significantly altered with rapid stimulation (763 up-regulated and 156 down-regulated). For many individual transcripts, changes typical of AF/AT were observed, with marked up-regulation of genes encoding BNP and ANP precursors, heat shock proteins, and MAP kinases, while novel signaling pathways and molecules were also identified. Both stress and survival response were evident, as well as up-regulation of multiple transcription factors. Genes were also functionally classified based on cellular component, biologic process, and molecular function using the Gene Ontology database to permit direct comparison of our data with other gene sets regulated in human AF and experimental AT. For broad categories of genes grouped by functional classification, there was striking conservation between rapidly stimulated HL-1 cells and AF/AT. Results were confirmed using real-time quantitative RT-PCR on 13 genes selected by physiological relevance in AF/AT and regulation in the microarray analysis (up, down, and nonregulated). Rapidly-stimulated atrial myocytes provide a complementary experimental paradigm to explore the initial cellular signals in AT remodeling to identify novel targets in the treatment of AF.
No associated publication
No sample metadata fields
View SamplesMist1+CD24hi cells and Mist1+CD24lo cells in mouse small intestine were separatedly sorted, and RNAs were isolated.
No associated publication
Specimen part
View SamplesCells located at the invasive front and in the tumor mass of mouse cervical squamous cell carcinomas were isolated by laser microdissection from hematoxylin-stained HPV/E2 sections. 7 months old HPV/E2 mice treated with oestrogen develop invasive cervical squamous cell carcinomas. This model recapitulates human invasive cervical neoplasias.
Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.
Specimen part
View SamplesIRF3 is one of the most critical transcription factor in down stream of pattern recognition receptors (such as toll-like receptor and RIG-I-like receptor) signalling pathway. IRF3 is known to induce the expression of type I IFN gene upon virus infection.
No associated publication
Specimen part, Treatment
View Samples