We demonstrate that expression of key markers of keratinocyte differentiation is suppressed by exposure to sodium arsenite. Folate deficiency exacerbates this effect. In addition, cancer-related cell movement genes, and growth and proliferation genes are altered. Several redox-sensitive transcription factors are implicated in mediating these gene expression changes due to arsenic treatment and folate deficiency.
Folate deficiency enhances arsenic effects on expression of genes involved in epidermal differentiation in transgenic K6/ODC mouse skin.
No sample metadata fields
View SamplesWe characterized gene expression changes in the developing mouse liver at gestational days (GD) 11.5, 12.5, 13.5, 14.5, 16.5, and 19.5 and in the neonate (postnatal day (PND) 7 and 30) using full-genome microarrays and compared these changes to that in the adult liver. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were suppressed. Comparison of the dataset to a number of previously published datasets revealed 1) a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2) a nucleated erythrocyte signature in the fetus and 3) suppression of most xenobiotic metabolism genes throughout development, except a number of transporters associated with expression in hematopoietic cells.
Transcriptional ontogeny of the developing liver.
Specimen part
View SamplesAims: To assess the virulence of multiple Aeromonas spp. using two models, a neonatal mouse assay and a mouse intestinal cell culture.
Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture's ability to predict virulence based on transcriptional response.
No sample metadata fields
View SamplesExposure to PFOA during gestation altered the expression of genes related to fatty acid catabolism in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with activation of PPAR alpha. Non-PPAR alpha related changes were suggested as well.
Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.
No sample metadata fields
View SamplesPerfluorooctane sulfonate (PFOS) is a perfluoroalkyl acid (PFAA) and a persistent environmental contaminant found in the tissues of humans and wildlife. Although blood levels of PFOS have begun to decline, health concerns remain because of the long half-life of PFOS in humans. Like other PFAAs, such as perfluorooctanoic acid (PFOA), PFOS is an activator of peroxisome proliferator-activated receptor-alpha (PPAR) and exhibits hepatocarcinogenic potential in rodents. PFOS is also a developmental toxicant in rodents where, unlike PFOA, its mode of action is independent of PPAR. Wild-type (WT) and PPAR-null (Null) mice were dosed with 0, 3, or 10 mg/kg/day PFOS for 7 days. Animals were euthanized, livers weighed, and liver samples collected for histology and preparation of total RNA. Gene profiling was conducted using Affymetrix 430_2 microarrays. In WT mice, PFOS induced changes that were characteristic of PPAR transactivation including regulation of genes associated with lipid metabolism, peroxisome biogenesis, proteasome activation, and inflammation. PPAR-independent changes were indicated in both WT and Null mice by altered expression of genes related to lipid metabolism, inflammation, and xenobiotic metabolism. Such results are similar to prior studies done with PFOA and are consistent with modest activation of the constitutive androstane receptor (CAR) and possibly PPAR and/or PPAR/. Unique treatment-related effects were also found in Null mice including altered expression of genes associated with ribosome biogenesis, oxidative phosphorylation and cholesterol biosynthesis. Of interest was up-regulation of Cyp7a1, a gene which is under the control of various transcription regulators. Hence, in addition to its ability to modestly activate PPAR, PFOS induces a variety of off-target effects as well.
Gene Expression Profiling in Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPARα-Independent Effects.
Sex, Specimen part, Treatment
View SamplesMost of the transcriptional changes induced by PFOS in the fetal mouse liver and lung were related to activation of PPARalpha. When compared to the transcript profiles induced by PFOA (Pubmed ID 17681415), few remarkable differences were found other than up-regulation of Cyp3a genes. Because PFOS and PFOA have been shown to differ in their mode of action in the murine neonate, these data suggest that changes related to PFOS-induced neonatal toxicity may not be evident in the fetal transcriptome at term.
Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.
Sex, Age, Specimen part, Treatment
View SamplesThe role of Gata2 in regulating uterine function including fertility, implantation, decidualization and P4 signaling in the mouse was investigated by the conditional ablation of Gata2 in the uterus using the (PR-cre) mouse and ChIP-seq for in vivo GATA2 binding sites in the murine uterus upon acute P4 administration.
A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.
Sex, Age, Specimen part
View SamplesLung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1s expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer.
ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.
Age, Specimen part
View SamplesIn a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the -secretase ADAM10 prevented amyloid plaque formation and alleviated cognitive deficits. Furthermore, there was a positive influence of ADAM10 over-expression on neurotransmitter-specific formation of synapses and on synaptic plasticity.
Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice.
Sex, Age
View Samples