To test the regulatory effects of Dmrt5 on gene expression, we designed tetracycline inducible lines of Dmrt5 transgenic mouse ESCs. Overexpression of Dmrt5 was induced upon addition of Doxycycline (Dox). To evaluate the effects of Dmrt5 on gene expression in different stages of in vitro differentiated NPC derived from mouse embryonic stem cells (ESC), we analyzed gene expression profiles at differentiation day 7 and day 9 with or without Dox. The data revealed that overexpression of Dmrt5 in in vitro differentiated neural progenitor cells (NPC) regulates gene expression. Addition of Dox to the medium of the control cell line rtTA did not significantly alter gene expression profile, demonstrating that the observed effects were through induction of Dmrt5, but not simply through Dox.
Doublesex and mab-3-related transcription factor 5 promotes midbrain dopaminergic identity in pluripotent stem cells by enforcing a ventral-medial progenitor fate.
Cell line, Treatment
View SamplesThe data revealed differential expression between floor plate and ventral lateral region in E10.5 mouse embryo midbrain. Several differentially expressed genes in these regions have been reported in the literature, demonstrating reliability of tissue dissection.
No associated publication
Sex
View SamplesNuocytes are a recently described cell that responds to both IL-25 and IL-33 and produce high levels of IL-13 and IL-5
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity.
Specimen part, Time
View SamplesXEN cells are derived from the primitive endoderm of mouse blastocysts. In culture and in chimeras they exhibit properties of parietal endoderm. However, BMP signaling promotes XEN cells to form an epithelium and differentiate into visceral endoderm (VE). Of the several different subtypes of VE described, BMP induces a subtype that is most similar to the VE adjacent to the trophoblast-derived extraembryonic ectoderm.
BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm.
Treatment
View SamplesThe overall objective of this proposal is to map the temporal and spatial dynamics of gene expression in the fetal mouse testis at key developmental timepoints. Urogenital tract malformations are the most common birth defects in males and their incidence together with other male reproductive health concerns such as reduced fertility and testicular cancer are reportedly on the rise in the human population. To better understand the impact of genetic factors and environmental influences on testicular development, it is important to first understand normal gene expression patterns and signaling cascades within the fetal testis during development. The goal of this study is to identify cell-specific genes that can be used as biomarkers for key differentiation events.
No associated publication
Sex
View SamplesThe long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing bladder. The central thesis is straightforward. The combination of microdissected and laser capture microdissection (LCM) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here represents the gene expression profiles of compartmental bladder tissues collected through laser capture microscopy.
No associated publication
Sex
View SamplesThe long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing bladder. The central thesis is straightforward. The combination of microdissected tissues and FACS sorted cells plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here represents the gene expression profiles of FACS sorted newborn bladder cells and compares two distinct cell populations of smooth muscle cells since both of these populations contain EGFP from a SMGA (Actg2) promoter shown to be expressed only in smooth muscle cells.
No associated publication
Sex
View SamplesThe long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing bladder. The central thesis is straightforward. The combination of microdissected tissues and FACS sorted cells plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here delineates the gene expression profiles of the mesenchymal and epithelial compartments of the e13 mouse bladder.
No associated publication
Sex
View SamplesThe long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing genitourinary tract The central thesis is straightforward. The combination of microdissected tissues and FACS sorted cells plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here delineates the gene expression profiles of the epithelial compartments of the P7 mouse bladder.
No associated publication
Sex, Specimen part
View SamplesThe long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing bladder. The central thesis is straightforward. The combination of micro dissected tissues and FACS sorted cells plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here delineates the gene expression profiles of the mesenchymal and epithelial compartments of the E13 mouse bladder neck/urethral compartment.
No associated publication
Sex, Specimen part
View Samples