Gene expression microarrays were performed to investigate the molecular effects of exposure to environmental polluted groundwater. Zebrafish was treated with polluted waters collected from dumps located upstream and downstream a sanitary landfills. Gene expression profiling of zebrafish liver was analyzed after acute exposure to sampled waters.
Cross-species toxicogenomic analyses and phenotypic anchoring in response to groundwater low-level pollution.
None
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Sex, Specimen part
View SamplesWe performed gene-expression analysis of mouse Purkinje cells as a model single-type neuron. DNA microarray analysis detected at least 7,055 genes in Purkinje cells, most of which are classified into functional molecule categories.
No associated publication
Sex, Specimen part
View SamplesWe performed gene-expression analysis of mouse cerebellar granule cell layer as compared to that of Purkinje cells. DNA microarray analysis detected genes in cerebellar granule cell layer, most of which are classified into functional molecule categories.
No associated publication
Sex, Specimen part
View SamplesSelective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressant drugs in pregnant women. Given that SSRIs can cross the placental and blood-brain barriers, these drugs potentially affect serotonergic neurotransmission and neurodevelopment in the fetus. Although no gross SSRI-related teratogenic effect has been reported, infants born following prenatal exposure to SSRIs have a higher risk for various behavioral abnormalities. Therefore, we examined the effects of prenatal fluoxetine, the most commonly prescribed SSRI, on social and cognitive behavior in mice. Intriguingly, chronic in utero fluoxetine treatment impaired working memory and social novelty recognition in adult males with augmented spontaneous inhibitory synaptic transmission onto the layer 5 pyramidal neurons in the medial prefrontal cortex (mPFC). Moreover, fast-spiking interneurons in the layer 5 mPFC exhibited enhanced basal intrinsic excitability, augmented serotonin-induced neuronal excitability, and increased inhibitory synaptic transmission onto the layer 5 pyramidal neurons due to augmented 5-HT2A receptor (5-HT2AR) signaling. More importantly, the observed behavioral deficits of in utero fluoxetine-treated mice could be reversed by acute systemic application of 5-HT2AR antagonist. Taken together, our findings support the notion that alterations in serotonin-mediated inhibitory neuronal modulation result in reduced cortical network activities and cognitive impairment following prenatal exposure to SSRIs.
No associated publication
Sex, Specimen part, Treatment
View SamplesWe performed RNA-sequencing on four groups of zebrafish larvae: control, Tg(Myc), Tg(Kras), Tg(Myc)&Tg(Kras) to analyze the expression of genes involved in the lipid-associated pathways.The results revealed high dynamic alterations in almost all aspects of lipid metabolism, among which, the expressions of genes involved in TG/DG/GP transformation and FA desaturation/elongation displayed intensive changes, in consistent with our observations in lipodomics profiling
No associated publication
None
No sample metadata fields
View SamplesLittle is known about the roles of methyl-CpG-binding domain protein 2 (MBD2), a reader of DNA methylation, in T-cell acute lymphoblastic leukemia (T-ALL). Here, we investigated the role of MBD2 in T-ALL by using an Mbd2 knockout mouse model. We found that MBD2 ablation impeded the progression and maintenance of Notch1-driven T-ALL.Our data reveals essential roles for MBD2 in lymphopoiesis and T-ALL and support an intriguing potential of MBD2 as a therapeutic target for T-ALL.
No associated publication
Specimen part
View SamplesAlzheimer’s disease (AD) is a progressive neurodegenerative disorder. Oligomers of Amyloid-β peptides (Aβ) are thought to play a pivotal role in AD pathogenesis, yet the mechanisms involved remain unclear. Two major isoforms of Aβ associated with AD are Aβ40 and Aβ42, the latter being more prone to form oligomers and toxic. Humanized yeast models are currently applied to unravel the cellular mechanisms behind Aβ toxicity. Here, we took a systems biology approach to study two yeast AD models which expressed either Aβ40 or Aβ42 in bioreactor cultures. Strict control of oxygen availability and culture pH, strongly affected the chronological lifespan and reduced confounding effects of variations during cell growth. Reduced growth rates and biomass yields were observed upon expression of Aβ42, indicating a redirection of energy from growth to maintenance. Quantitative physiology analyses furthermore revealed reduced mitochondrial functionality and ATP generation in Aβ42 expressing cells, which matched with observed aberrant fragmented mitochondrial structures. Genome-wide expression levels analysis showed that Aβ42 expression triggers strong ER stress and unfolded protein responses (UPR). Expression of Aβ40 induced only mild ER stress, leading to activation of UPR target genes that cope with misfolded proteins, which resulted in hardly affected physiology. The combination of well-controlled cultures and AD yeast models strengthen our understanding of how cells translate different levels of Aβ toxicity signals into particular cell fate programs, and further enhance their role as a discovery platform to identify potential therapies.
Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid-β (Aβ) Toxicity in Yeast.
Genetic information
View SamplesAlzheimer’s disease (AD) is a progressive neurodegenerative disorder. Oligomers of Amyloid-β peptides (Aβ) are thought to play a pivotal role in AD pathogenesis, yet the mechanisms involved remain unclear. Two major isoforms of Aβ associated with AD are Aβ40 and Aβ42, the latter being more prone to form oligomers and toxic. Humanized yeast models are currently applied to unravel the cellular mechanisms behind Aβ toxicity. Here, we took a systems biology approach to study two yeast AD models which expressed either Aβ40 or Aβ42 in bioreactor cultures. Strict control of oxygen availability and culture pH, strongly affected the chronological lifespan and reduced confounding effects of variations during cell growth. Reduced growth rates and biomass yields were observed upon expression of Aβ42, indicating a redirection of energy from growth to maintenance. Quantitative physiology analyses furthermore revealed reduced mitochondrial functionality and ATP generation in Aβ42 expressing cells, which matched with observed aberrant fragmented mitochondrial structures. Genome-wide expression levels analysis showed that Aβ42 expression triggers strong ER stress and unfolded protein responses (UPR). Expression of Aβ40 induced only mild ER stress, leading to activation of UPR target genes that cope with misfolded proteins, which resulted in hardly affected physiology. The combination of well-controlled cultures and AD yeast models strengthen our understanding of how cells translate different levels of Aβ toxicity signals into particular cell fate programs, and further enhance their role as a discovery platform to identify potential therapies.
Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid-β (Aβ) Toxicity in Yeast.
Genetic information
View SamplesAlzheimer’s disease (AD) is a progressive neurodegenerative disorder. Oligomers of Amyloid-β peptides (Aβ) are thought to play a pivotal role in AD pathogenesis, yet the mechanisms involved remain unclear. Two major isoforms of Aβ associated with AD are Aβ40 and Aβ42, the latter being more prone to form oligomers and toxic. Humanized yeast models are currently applied to unravel the cellular mechanisms behind Aβ toxicity. Here, we took a systems biology approach to study two yeast AD models which expressed either Aβ40 or Aβ42 in bioreactor cultures. Strict control of oxygen availability and culture pH, strongly affected the chronological lifespan and reduced confounding effects of variations during cell growth. Reduced growth rates and biomass yields were observed upon expression of Aβ42, indicating a redirection of energy from growth to maintenance. Quantitative physiology analyses furthermore revealed reduced mitochondrial functionality and ATP generation in Aβ42 expressing cells, which matched with observed aberrant fragmented mitochondrial structures. Genome-wide expression levels analysis showed that Aβ42 expression triggers strong ER stress and unfolded protein responses (UPR). Expression of Aβ40 induced only mild ER stress, leading to activation of UPR target genes that cope with misfolded proteins, which resulted in hardly affected physiology. The combination of well-controlled cultures and AD yeast models strengthen our understanding of how cells translate different levels of Aβ toxicity signals into particular cell fate programs, and further enhance their role as a discovery platform to identify potential therapies.
Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid-β (Aβ) Toxicity in Yeast.
Genetic information
View Samples