refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE39615
Transcriptomic landscape of developing Presomitic Mesoderm (PSM) from Tailbud to somite in E9.5 mouse embryo and in in vitro differentiated Paraxial mesoderm derived from mouse embryonic stem cells (mESCs).
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon

Description

Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide to establish conditions for the differentiation of monolayer cultures of embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-39615

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment, Time

View Samples
accession-icon GSE14366
Analysis of the retinal gene expression after hypoxic preconditioning identifies candidate genes for neuroprotection
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Neuroprotective therapies for retinal degeneration may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1 in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration.

Publication Title

Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection.

Alternate Accession IDs

E-GEOD-14366

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19675
Negative regulation of the IFN/STAT signaling pathway by the Trim24 tumor suppressor protein through Rara inhibition
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Recent genetic studies in mice have established a key role for the nuclear receptor coregulator Trim24 in liver tumor suppression and provided evidence that Trim24 suppresses hepatocarcinogenesis by inhibiting retinoic acid receptor alpha (Rara)-dependent transcription and cell proliferation. However, it is unknown which downstream targets of Rara regulated by Trim24 are critical for tumorigenesis. We report here that loss of Trim24 results in the overexpression of interferon (IFN)/STAT pathway genes in the liver, a process that occurs early in tumorigenesis and is more pronounced in tumors, despite the enhanced expression, late in the disease, of negative regulators such as Usp18, Socs1 and Socs2.

Publication Title

Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition.

Alternate Accession IDs

E-GEOD-19675

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39613
Transcriptomic landscape of developing Presomitic mesoderm (PSM)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide to establish conditions for the differentiation of monolayer cultures of embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We generated a high resolution transcriptome expression landscape along the PSM of the mouse embryo, by microdissecting consecutive fragment of the PSM along the antero-posterior axis of the embryo. We took advantage of the observation that during development of embryo, the antero-posterior spatial position of the tissue is directly correlated to its differentiation (time) stage, thus generating an expression time-course of presomitic mesoderm development.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-39613

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE46090
Gene expression in WT and Ikaros-deficient DN3, DN4 and DP thymocyte populations
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

DN3, DN4 and DP cells were sorted from 3-4 week old WT and mice and subjected to transcriptome analysis

Publication Title

The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells.

Alternate Accession IDs

E-GEOD-46090

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0