This SuperSeries is composed of the SubSeries listed below.
Differential roles of Sall4 isoforms in embryonic stem cell pluripotency.
Specimen part, Cell line
View SamplesMurine embryonic stem cells (ESCs) are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing are expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). By genome-wide location analysis, we have determined that Sall4b, and not Sall4a, binds preferentially to highly expressed loci in ES cells. Sall4a and Sall4b binding sites are distinguished by both epigenetic marks at target loci and their clustering with binding sites of other pluripotency factors. When ESCs expressing a single isoform of Sall4 are generated, Sall4b alone could maintain the pluripotent state, although it could not completely suppress all differentiation markers. Sall4a and Sall4b collaborate in maintenance of the pluripotent state, but play distinct roles. Our work is novel in establishing such isoform-specific differences in ES cells.
Differential roles of Sall4 isoforms in embryonic stem cell pluripotency.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part, Disease, Cell line, Treatment
View SamplesIn this project, we studied a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the GATA1 transcription factor (called GATA1s mutation). The model was generated through retroviral insertional mutagenesis in Gata1s mutant fetal liver progenitors. In this study, we analyzed the dependency of these leukemic cells on the Gata1s mutant protein.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part, Cell line, Treatment
View SamplesThe goal of this study is to develop a Plag1 signature and determine how its overexpression contributes to leukemogenesis.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Cell line
View SamplesThe goal of this study is to derive a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the hematopoietic transcription factor, GATA1 (called GATA1s mutation). We achieved this through transduction of Gata1s mutant fetal progenitors by MSCV-based retrovirus expressing a GFP marker, followed by in vitro selection (for immortalized cell lines), and then in vivo selection (for transformed cell lines) through transplantation.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part
View SamplesThe goal of this study is to derive a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the hematopoietic transcription factor, GATA1 (called GATA1s mutation). We achieved this through transduction of Gata1s mutant fetal progenitors by MSCV-based retrovirus expressing a GFP marker, followed by in vitro selection (for immortalized cell lines), and then in vivo selection (for transformed cell lines) through transplantation.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part
View SamplesWe used microarrays to detail the role of Polycomb proteins including Ezh2 and Eed in maintaining ES cell identity and executing pluripotency.
EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.
Specimen part
View SamplesWe used microarrays to detail the role of JMJ in ES cell function.
Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.
Specimen part
View Samples