We report a study about differentially expressed small non-coding RNAs in the blood of humans harboring a latent (LTBI) or active tuberculosis (TB) infection in comparison with exposed controls (ExC) and treated LTBI (LTBItt). All non-TB subjects enrolled in this study were recent close contacts (rCt) of a newly diagnosed contagious TB cases enrolled in Rio de Janeiro, Brazil. The detailed methodology is described below. According to Brazilian Ministry of Health (BMH) guidelines, the screen to detect LTBI among recent contacts comprises a clinical evaluation by a physician specializing in pulmonary diseases, a chest X-ray (CXR), and a tuberculin skin test (TST, cut-off 5mm). Additionally, as part of this study, blood was collected for short- (st) and long-term (lt) IGRA. St-IGRA was performed by stimulating whole blood with the Mtb antigen ESAT6:CFP10 (expressed as a fusion protein) for 22h (cut-off 10pg/mL). Lt-IGRA involved stimulating peripheral blood mononuclear cells (PBMC) with this same antigen for 5 days (cut-off 100 pg/mL). Cases were defined as follows: ExC were recent close contacts of a TB index case and had a negative response to both TST and in house interferon-gamma release assay (IGRA) by stimulating blood-derived specimens with ESAT6:CFP10 indicating absence of Mycobacterium tuberculosis (Mtb) infection. LTBI was defined as (1) a TST induration >5 mm measured 72 h after intradermal injection of Mtb purified protein derivative (PPD) and (2) a positive IGRA response (to either st-IGRA or lt-IGRA, or both) if indicators of active disease were observed on CXR, (3) the absence of acid-fast bacilli (AFB) and negative Lowenstein-Jensen (LJ) culture of clinical specimens were also required. LTBItt consisted of LTBI cases (TST+/IGRA+ at enrollment) who completed a 6-month course of IPT. Their blood samples were collected >2 months after the end of isoniazid (INH) preventive treatment (IPT). Active TB was defined as (1) respiratory symptoms suggestive of TB, and/or (2) detection of AFB and/or positive LJ culture in sputum, bronchoalveolar lavage or biopsy, followed by (3) remission of symptoms upon anti-TB chemotherapy. Their blood samples were obtained before initiation of treatment. Whole blood was collected in PAXgene RNA tubes (PreAnalytiX, SWZ) and was stored at -80°C for <2 years before RNA extraction. sncRNA libraries. Total RNA (including small RNA) was isolated using the PAXgene Blood miRNA Kit (PreAnalytiX, SWZ), which is indicated for the isolation and purification of total RNA longer than 18 nucleotides. The manufacturer’s instructions were followed at both stages. Total RNA was quantified with a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, EUA) and RNA integrity was assessed via agarose gel electrophoresis. One microgram RNA was used for cDNA library preparation (TruSeq Small RNA Sample Preparation® Kit, Illumina, San Diego, CA) following the manufacturer’s protocols. RNAseq was performed on an Illumina HiSeq® 2500 Sequencing System (Illumina, San Diego, CA), generating 50 bp single reads and ≈16 million reads passing filter for each sample. Pre-processing and differential expression. The FASTQ files were preprocessed (FastQC 0.11.2), adaptors trimmed (Cutadapt 1.7.1), aligned to the human genome (STAR 2.4.1d), counted (featureCounts 1.4.6) on the Oasis 2.0 web platform. Transcripts with <5 reads in at least one sample were excluded. Then, normalized and evaluated for differentially expressed (DE) transcripts using DESeq2 (v. 1.16) on the Oasis 2.0 web platform (https://oasis.dzne.de/). Overall design: We collected blood samples from recent close contacts at recruitment and monitored them for 1 year. All TB cases were treatment-naïve. An active TB sncRNA signature was derived from whole blood RNA sequencing data by comparing TB and non-TB groups. Notably, it classified all TB cases correctly and reclassified 8 presumed LTBI cases as TB, 5 of whom turned out to have features of Mycobacterium tuberculosis infection on chest radiographs.
Reprogramming of Small Noncoding RNA Populations in Peripheral Blood Reveals Host Biomarkers for Latent and Active Mycobacterium tuberculosis Infection.
Specimen part, Subject
View SamplesDREAM/KChIP-3 is a calcium-dependent transcriptional repressor highly expressed in immune cells. Transgenic mice expressing a dominant active DREAM mutant show reduced serum immunoglobulin levels. In vitro assays show that reduced immunoglobulin secretion is an intrinsic defect of transgenic B cells that occurs without impairment in plasma cell differentiation but with an accelerated entry in cell division and an increase in class switch recombination. B cells from DREAM knockout mice did not show any phenotype, due to compensation by endogenous KChIP-2. Expression arrays revealed modified expression of Edem1 and Derlin3, two proteins related to the ER-associated degradation pathway and of Klf9, a cell-cycle regulator. Our results disclose a function of DREAM and KChIP-2 in Ig subclass production in B lymphocytes.
Increased B cell proliferation and reduced Ig production in DREAM transgenic mice.
Specimen part
View SamplesAs a critical cellular stress sensor, p53 mediates a variety of defensive processes including cell-cycle arrest, apoptosis, and senescence to prevent propagation of hyperproliferative cells or cells with a damaged genome, hence the formation of neoplasia. Transactivation of downstream genes plays an important while sometimes controversial role in regulating these cellular processes. To evaluate the dependence on transcriptional activation in p53s activities, we generated genetically-modified mouse lines carrying mutations in the transactivation domains (TADs) of p53. These transactivatio-deficient mutants serve as unique reagents to probe the dependence on robust transactivation in p53-mediated cellular functions, as well as the underneath mechanisms. To identify genes differentially regulated by these p53 mutants, we performed gene expression profiling analysis on mouse embryonic fibroblast cells (MEFs) from these mice in the context of oncogenic Ras-induced premature cellular senescence.
Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression.
Specimen part
View SamplesDREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. Previous studies have shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger3 (NCX3) in cerebellar granules to control Ca2+ homeostasis and survival of these neurons. To achieve a more global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Our results indicate that DREAM is a major transcription factor in the cerebellum that regulates genes important for cerebellar development.
Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice.
Specimen part
View SamplesDeregulated intracellular Ca2+ homeostasis underlies synaptic dysfunction and is a common feature in neurodegenerative processes, including Huntington's disease (HD). DREAM/calsenilin/KChIP-3 is a multifunctional Ca2+ binding protein that controls the expression level and/or the activity of several proteins related to Ca2+ homeostasis, neuronal excitability and neuronal survival. We found that expression of endogenous DREAM (DRE antagonist modulator) is reduced in the striatum of R6 mice, in STHdh-Q111/111 knock in striatal neurons and in HD patients. DREAM down regulation in R6 striatum occurs early after birth, well before the onset of motor coordination impairment, and could be part of an endogenous mechanism of neuroprotection, since i) R6/2 mice hemizygous for the DREAM gene (R6/2xDREAM+/-) showed delayed onset of locomotor impairment and prolonged lifespan, ii) motor impairment after chronic administration of 3-NPA was reduced in DREAM knockout mice and enhanced in daDREAM transgenic mice and, iii) lentiviral-mediated DREAM expression in STHdh-Q111/111 knock in cells sensitizes them to oxidative stress. Transcriptomic analysis showed that changes in gene expression in R6/2 striatum were notably reduced in R6/2xDREAM+/- striatum. Chronic administration of repaglinide, a molecule able to bind to DREAM in vitro and to accelerate its clearance in vivo, delayed the onset of motor dysfunction, reduced striatal loss and prolonged the lifespan in R6/2 mice. Furthermore, exposure to repaglinide protected STHdh-Q111/111 knock in striatal neurons sensitized to oxidative stress by lentiviral-mediated DREAM overexpression. Thus, genetic and pharmacological evidences disclose a role for DREAM silencing in early neuroprotective mechanisms in HD.
Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.
Specimen part
View SamplesChanges in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and the plastic storage of memories. DREAM /KChIP proteins form heterotetramers that bind DNA and repress transcription in a Ca2+-dependent manner. Single ablation of one member of the DREAM/KChIP family may result in a mild or the absence of phenotype due to partial gene compensation. To study the function of DREAM/KChIP proteins in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). We show that daDREAM controls the expression of several activity-dependent transcription factors including Npas4, Nr4a1, Mef2C, JunB and c-Fos, as well as the chromatin modifying enzyme Mbd4 and proteins related to actin polymerization like Arc and gelsolin. Thus, directly or through these targets, expression of daDREAM in the forebrain resulted in a complex phenotype characterized by i) impaired learning and memory, ii) loss of recurrent inhibition and enhanced LTP in the dentate gyrus without affecting Kv4-mediated potassium currents, and iii) modified spine density in DG granule neurons. Our results propose DREAM as a master-switch transcription factor regulating several activity-dependent gene expression programs to control synaptic plasticity, learning and memory.
DREAM controls the on/off switch of specific activity-dependent transcription pathways.
Specimen part
View SamplesActivation of oncogenic ras pathway accounts for up to 90% low-grade superficial urothelial carcinomas of bladder, and p53 deficiency is very common in high-grade muscle invasive carcinomas. These two pathways in bladder urothelial tumorigenesis used to be considered divergent and their potential collaboration has not been illustrated.
Oncogenic HRAS Activates Epithelial-to-Mesenchymal Transition and Confers Stemness to p53-Deficient Urothelial Cells to Drive Muscle Invasion of Basal Subtype Carcinomas.
Age, Specimen part
View SamplesTgif1 is a transcriptional corepressor that limits TGF responsive gene expression. TGF signaling has antiproliferative effects in several cell types, generally resulting in a G1 arrest. Mouse embryo fibroblasts (MEFs) are primary cells with limited life-span, that senesce after several passages in culture.
Premature senescence and increased TGFβ signaling in the absence of Tgif1.
Specimen part
View SamplesIn this study, we have explored microarray-based differential gene expression profile in mouse lung tissue 8 h after inducing polymicrobial sepsis and the effect of preprotachykinin-A (PPTA) gene deletion. A range of genes differentially expressed (> 2-fold) in microarray analysis was assessed, PPTA-knockout septic mice with their respective sham controls.
Substance P in polymicrobial sepsis: molecular fingerprint of lung injury in preprotachykinin-A-/- mice.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism.
Sex, Specimen part
View Samples