Primordial genomic challenge compromises embryonic development and survival, and surveillance of deployed transcriptional programs may provide an early opportunity to forecast phenotype abnormalities. Here, comparisons between wild-type and calreticulin-ablated embryonic stem cells revealed transcriptome shifts precipitated by calreticulin loss. Bioinformatic analysis identified down and up-regulation in 1187 and 418 genes, respectively. Cardiovascular development precedes other organogenic programs, and examination of cardiogenic genes revealed a map of calreticulin-calibrated expression profiles that encompass the developmental regulators, Ccnd1, Ccnd2 and Notch1. Interrogation of primary function in the resolved network forecasted abnormalities during myocardial development. Whole embryo magnetic resonance imaging, verified by pathoanatomical analysis, diagnosed prominent ventricular septal defect. Correlation clustering and network resolution of probesets associated with protein folding/chaperoning and calcium handling demonstrated 14 and 19 genes, respectively, modulated by calreticulin deficiency. Calreticulin deletion provoked ontological re-prioritization of gene expression, molecular transport and protein trafficking that translated into multiple subcellular functional outcomes. Individual stem cell-derived cardiomyocytes lacking calreticulin demonstrated a disorganized contractile apparatus with mitochondrial paucity and architectural aberrations. Thus, bioinformatic deconvolution of primordial embryonic stem cell transcriptomes enables predictive phenotyping of defective developmental networks that coalesce from complex systems biology hierarchies.
Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
Specimen part
View Samples3 subtypes of cortical projection neurons were purified by fluorescence-activated cell sorting (FACS) at 4 different stages of development from mouse cortex. A detailed description of the data set is described in Arlotta, P et al (2005) and Molyneaux, BJ et al (2009). The hybridization cocktails used here were originally applied to the Affymetrix mouse 430A arrays and submitted as GEO accession number GSE2039. The same hybridization cocktails were then applied to the Affymetrix mouse 430 2.0 arrays, and those data are contained in this series.
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
Specimen part
View SamplesMutations of the transcriptional regulator Mecp2 cause the X-linked autism spectrum disorder Rett syndrome (RTT), and Mecp2 has been implicated in several other neurodevelopmental disorders. To identify potential target genes regulated directly or indirectly by MeCP2, we performed comparative gene expression analysis via oligonucleotide microarrays on Mecp2-/y (Mecp2-null) and wild-type CPN purified via fluorescence-activated cell sorting (FACS).
Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions.
No sample metadata fields
View SamplesFollowing neural tube closure at around E9.5, the rhombic lip within the rhombomere 1/isthmus region ("upper rhombic lip") produces a sequence of neuronal lineages that populate the brainstem and cerebellum. The transcription factor Atoh1 (Math1) is required for this specialized neurogenesis, although the genetic programs that delineate the temporal cell fate changes downstream of Atoh1 are not well characterized. We examined the gene expresion changes that take place within Atoh1 lineages
Genes expressed in Atoh1 neuronal lineages arising from the r1/isthmus rhombic lip.
Specimen part
View SamplesThe goal of the study was to identify on a genome-wide scale RNAs that are enriched at the leading edge of migrating cells. For this, we employed a fractionation method in which cells are plated on a microporous filter whose bottom side only is coated with fibronectin. The cells thus polarize and extend pseudopodial protrusions towards the bottom surface. These protruding pseudopodia can then be physically isolated from the bottom surface of the filter and their contents compared with the remaining cell bodies, which are isolated from the upper surface of the filter.
Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Otitis media impacts hundreds of mouse middle and inner ear genes.
Age, Specimen part, Treatment
View SamplesObjective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition.
Otitis media impacts hundreds of mouse middle and inner ear genes.
Age, Specimen part, Treatment
View SamplesObjective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition.
Otitis media impacts hundreds of mouse middle and inner ear genes.
Age, Specimen part, Treatment
View Samples