We report a study about differentially expressed small non-coding RNAs in the blood of humans harboring a latent (LTBI) or active tuberculosis (TB) infection in comparison with exposed controls (ExC) and treated LTBI (LTBItt). All non-TB subjects enrolled in this study were recent close contacts (rCt) of a newly diagnosed contagious TB cases enrolled in Rio de Janeiro, Brazil. The detailed methodology is described below. According to Brazilian Ministry of Health (BMH) guidelines, the screen to detect LTBI among recent contacts comprises a clinical evaluation by a physician specializing in pulmonary diseases, a chest X-ray (CXR), and a tuberculin skin test (TST, cut-off 5mm). Additionally, as part of this study, blood was collected for short- (st) and long-term (lt) IGRA. St-IGRA was performed by stimulating whole blood with the Mtb antigen ESAT6:CFP10 (expressed as a fusion protein) for 22h (cut-off 10pg/mL). Lt-IGRA involved stimulating peripheral blood mononuclear cells (PBMC) with this same antigen for 5 days (cut-off 100 pg/mL). Cases were defined as follows: ExC were recent close contacts of a TB index case and had a negative response to both TST and in house interferon-gamma release assay (IGRA) by stimulating blood-derived specimens with ESAT6:CFP10 indicating absence of Mycobacterium tuberculosis (Mtb) infection. LTBI was defined as (1) a TST induration >5 mm measured 72 h after intradermal injection of Mtb purified protein derivative (PPD) and (2) a positive IGRA response (to either st-IGRA or lt-IGRA, or both) if indicators of active disease were observed on CXR, (3) the absence of acid-fast bacilli (AFB) and negative Lowenstein-Jensen (LJ) culture of clinical specimens were also required. LTBItt consisted of LTBI cases (TST+/IGRA+ at enrollment) who completed a 6-month course of IPT. Their blood samples were collected >2 months after the end of isoniazid (INH) preventive treatment (IPT). Active TB was defined as (1) respiratory symptoms suggestive of TB, and/or (2) detection of AFB and/or positive LJ culture in sputum, bronchoalveolar lavage or biopsy, followed by (3) remission of symptoms upon anti-TB chemotherapy. Their blood samples were obtained before initiation of treatment. Whole blood was collected in PAXgene RNA tubes (PreAnalytiX, SWZ) and was stored at -80°C for <2 years before RNA extraction. sncRNA libraries. Total RNA (including small RNA) was isolated using the PAXgene Blood miRNA Kit (PreAnalytiX, SWZ), which is indicated for the isolation and purification of total RNA longer than 18 nucleotides. The manufacturer’s instructions were followed at both stages. Total RNA was quantified with a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, EUA) and RNA integrity was assessed via agarose gel electrophoresis. One microgram RNA was used for cDNA library preparation (TruSeq Small RNA Sample Preparation® Kit, Illumina, San Diego, CA) following the manufacturer’s protocols. RNAseq was performed on an Illumina HiSeq® 2500 Sequencing System (Illumina, San Diego, CA), generating 50 bp single reads and ≈16 million reads passing filter for each sample. Pre-processing and differential expression. The FASTQ files were preprocessed (FastQC 0.11.2), adaptors trimmed (Cutadapt 1.7.1), aligned to the human genome (STAR 2.4.1d), counted (featureCounts 1.4.6) on the Oasis 2.0 web platform. Transcripts with <5 reads in at least one sample were excluded. Then, normalized and evaluated for differentially expressed (DE) transcripts using DESeq2 (v. 1.16) on the Oasis 2.0 web platform (https://oasis.dzne.de/). Overall design: We collected blood samples from recent close contacts at recruitment and monitored them for 1 year. All TB cases were treatment-naïve. An active TB sncRNA signature was derived from whole blood RNA sequencing data by comparing TB and non-TB groups. Notably, it classified all TB cases correctly and reclassified 8 presumed LTBI cases as TB, 5 of whom turned out to have features of Mycobacterium tuberculosis infection on chest radiographs.
Reprogramming of Small Noncoding RNA Populations in Peripheral Blood Reveals Host Biomarkers for Latent and Active Mycobacterium tuberculosis Infection.
Specimen part, Subject
View SamplesEndothelin-1 (ET-1) plays a critical role in connective tissue remodeling by fibroblasts during tissue repair and fibrosis. We investigated the molecular pathways in the transmission of ET-1 signals that lead to features of connective tissue remodeling, in particular the role of FAK (focal adhesion kinase).
Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis.
Age, Specimen part
View SamplesEvaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel; Affymetrix and Illumina. We performed gene expression profiling on the same striatal mRNA across both platforms.
Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis.
Age, Specimen part
View SamplesWe aimed to identify genes that are regulated by FGFR1 in brown adipose tissues of adult male ob/ob mice by injecting 1 mg/kg anti-FGFR1 agonistic antibody.
Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1.
Sex, Age, Specimen part
View SamplesThe TP53 transcription factor is frequently mutated at later stages of epithelial cancers, indicating a possible role in their invasion and metastasis. Importantly, in most cases rather than a simple loss of function p53 mutation, point mutations of p53 accumulate at the protein level and may have dominant negative functions. This study analyses gene expression differences between mice harbouring p53 mutation who do and do not develop metastasis.
Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
No sample metadata fields
View SamplesTo test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
No sample metadata fields
View SamplesTo test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
No sample metadata fields
View SamplesAchieving a mechanistic understanding of disease and initiating preclinical therapeutic trials necessitate the study of huntingtin toxicity and its remedy in model systems. To allow the engagement of appropriate experimental paradigms, Huntingtons disease (HD) models need to be validated in terms of how they recapitulate a particular aspect of human disease. In order to examine transcriptome-related effects of mutant huntingtin, we compared striatal mRNA profiles from seven genetic mouse models of disease to that of postmortem human HD caudate using microarray analysis. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in models of HD took longer to appear, 15-month and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. When the affected genes were compared across models, a robust concordance was observed. Importantly, changes concordant across multiple lines mice were also in excellent agreement with the mRNA changes seen in human HD caudate. Although it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared to those caused by expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. There was, however, an overall concordance between transcriptomic signature and disease stage. We thus conclude that the transcriptional changes of HD can be modelled in several available lines of transgenic mice, comprising lines expressing both N-terminal and full-length mutant huntingtin proteins. The combined analysis of mouse and human HD transcriptomes provides an important chronology of mutant huntingtin's gene expression effects.
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
Sex, Age, Specimen part
View Samples