Mice lacking the function of the PcG protein CBX2 (also known as M33) show defects in gonadal, adrenal, and splenic development. In particular, XY knockout mice develop ovaries but not testes, and the gonads are hypoplastic in both sexes.
Cbx2, a polycomb group gene, is required for Sry gene expression in mice.
Specimen part
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View SamplesThe xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection.
Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
Genetic information
View Samples