The two vertebrate Gsk-3 isoforms, Gsk-3a and Gsk-3b, are encoded by distinct genetic loci and exhibit mostly redundant function in murine embryonic stem cells (ESCs). Here we report that deletion of both Gsk-3a and Gsk-3b in mouse ESCs results in misregulated expression of imprinted genes and hypomethylation of corresponding imprinted loci. Treatment of wild-type ESCs with small molecule inhibitors of Gsk-3 phenocopies the DNA hypomethylation of imprinted loci observed in Gsk-3 null ESCs. We provide evidence that DNA hypomethylation in Gsk-3 null ESCs is due to a reduction in the levels of the de novo DNA methyltransferase, Dnmt3a2.
Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThe effect of CTCFL mutation on the transcriptional program in testes
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesPPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARalpha-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARalpha target genes, livers from several animal studies in which PPARalpha was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARalpha-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARalpha-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein beta polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (HSL, Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARalpha agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARalpha. Our study illustrates the power of transcriptional profiling to uncover novel PPARalpha-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex, Specimen part
View SamplesMurine GVH-SSc dorsal scapular skin samples were analyzed to determine the effect of IFNAR-1 inhibition on gene expression at day 14 and day 28. Gene expression in GVH-SSc skin from mice treated with a neutralizing IFNAR-1 antibody was compared to that in GVH-SSc skin from mice treated with isotype IgG, with skin from syngeneic graft controls as reference.
Type I IFNs Regulate Inflammation, Vasculopathy, and Fibrosis in Chronic Cutaneous Graft-versus-Host Disease.
Sex
View SamplesFumarylacetoacetate hydrolase (Fah), the last enzyme of the tyrosine degradation pathway, is specifically expressed in hepatocytes in the liver. Loss of Fah leads to liver failure in mice within 6-8 weeks. This can be prevented by blocking tyrosine degradation upstream of Fah with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). Here, we investigate the impact of p21 on global gene expression in Fah deficiency.
Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis.
No sample metadata fields
View SamplesMicroRNAs comprise 1-3% of all vertebrate genes, but their in vivo functions and mechanisms of action remain largely unknown. Zebrafish miR-430 is expressed at the onset of zygotic transcription and regulates morphogenesis during early development. Using a microarray approach and in vivo target validation, we find that miR-430 directly regulates several hundred target mRNAs. Targets are highly enriched for maternal mRNAs that accumulate in the absence of miR-430. We also show that miR-430 accelerates the deadenylation of target mRNAs. These results suggest that miR-430 facilitates the deadenylation and clearance of maternal mRNAs during early embryogenesis.
Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking.
Sex, Age, Specimen part, Time
View SamplesAntigen uptake, processing and presentation by dendritic cells are regulated by complex intra- and inter-cellular signalling events. Typical vaccine adjuvants lead to the transcription of pro-inflammatory cytokines and chemokines which relate to immune induction.
Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking.
Sex, Age, Specimen part, Time
View SamplesGene expression profiles of Immortalized KDM5A-/- MEFs with re-introduction of wild-type KDM5A or KDM5A-H483A mutant.
The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation.
Specimen part
View Samples