refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE6482
mECK36: a cell and animal model of virally induced Kaposi's sarcoma
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generated a cell (mECK36) that induced KS-like tumors in mice. mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+ and displayed a KSHV and host transcriptomes reminiscent of KS tumors.

Publication Title

In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma.

Alternate Accession IDs

E-GEOD-6482

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Alternate Accession IDs

E-GEOD-13093

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Alternate Accession IDs

E-GEOD-13062

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Alternate Accession IDs

E-GEOD-13060

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13063
Effects of extensive fasting and subsequent feeding on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding has a profound effect on the circadian clock. Fasting and feeding paradigms are known to influence hepatic transcription. This dataset shows the dynamic effects of refeeding mice after a 24hour fasting period.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Alternate Accession IDs

E-GEOD-13063

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21381
Germinal center T follicular helper cell IL-4 production is dependent on SLAM receptor (CD150)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.

Publication Title

Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).

Alternate Accession IDs

E-GEOD-21381

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21379
Expression Data from WT and Sh2d1a-/- in vivo follicular helper CD4 T cells (TFH) versus non follicular helper CD4 T cells (non-TFH)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.

Publication Title

Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).

Alternate Accession IDs

E-GEOD-21379

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16697
Expression Data from in vivo follicular helper CD4 T cells (TFH) versus non follicular helper CD4 T cells (non-TFH)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) follicular helper CD4 T cells (CXCR5high),versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection. A paper including data analysis of these experiments has been accepted for publication (Robert J. Johnston et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of follicular helper CD4 T cell differentiation).

Publication Title

Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation.

Alternate Accession IDs

E-GEOD-16697

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0