The objective of this study was to understand the genetic mechanisms of Vitamin-A-Deficiency (VAD)-induced arrest of spermatogonial stem-cell differentiation. Vitamin A and its derivatives (the retinoids) participate in many physiological processes including vision, cellular differentiation and reproduction. VAD affects spermatogenesis, the subject of our present study. Spermatogenesis is a highly regulated process of differentiation and complex morphologic alterations that, in the postnatal testis, leads to the formation of sperm in the seminiferous epithelium. VAD causes early cessation of spermatogenesis, characterized by degeneration of meiotic germ cells, leading to seminiferous tubules containing mostly type A spermatogonia and Sertoli cells. In this study, we investigated the molecular basis of VAD on spermatogenesis in mice. We used adult Balb/C mice fed with a Control or VAD diet for an extended period of time (8-28 weeks) and selected two time points (18 and 25 weeks) for microarray analysis.
Long-term vitamin A deficiency induces alteration of adult mouse spermatogenesis and spermatogonial differentiation: direct effect on spermatogonial gene expression and indirect effects via somatic cells.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesBetter understanding alveolarization mechanisms could help improving prevention and treatment of diseases characterized by reduced alveolar number, especially bronchopulmonary dysplasia (BPD). Although signaling through fibroblast growth factor (FGF) receptors is essential for alveolarization, involved ligands are unidentified. FGF18 whose expression peaks during alveolar septation is likely to be involved. Herein, a mouse model of inducible, lung-targeted FGF18-transgene was used to advance the onset of FGF18 expression, and genome-wide expression changes were determined.
Profiling target genes of FGF18 in the postnatal mouse lung: possible relevance for alveolar development.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
WAMIDEX: a web atlas of murine genomic imprinting and differential expression.
Age, Specimen part
View SamplesHistone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation
The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis.
Specimen part
View SamplesComparison of gene expression levels between matUPD18 and patUPD18 8.5 dpc whole embryo samples (maternal versus paternal uniparental disomy of Chr 18). Identification of highly differentially expressed transcripts.
WAMIDEX: a web atlas of murine genomic imprinting and differential expression.
Age, Specimen part
View SamplesIschemic cardiopathy is the leading cause of death in the world, for which efficient regenerative therapy is not currently available. In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue featuring collagen deposition and tissue remodelling with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Due to the lack of genetic lineage tracing evidence, it is not yet clear if new cardiomyocytes arise from existing contractile cells or from an uncharacterised set of progenitors cells. Nonetheless, several genes and molecules have been shown to participate in this process, some of them being cardiomyocyte mitogens in vitro. Though questions as what are the early signals that drive the regenerative response and what is the relative role of each cardiac cell in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts, and identified additional genes the expression of which is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative RT-PCR. For a subset of these genes, their expression pattern was analyzed by in situ hybridization and shown to be upregulated in the regenerating area of the heart. The specific role of these new transcripts during zebrafish heart regeneration was further investigated ex vivo using primary cultures of zebrafish cardiomyocytes and/or epicardial cells. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.
Transcriptomics approach to investigate zebrafish heart regeneration.
Specimen part, Time
View SamplesBackground & Aims: HNF4 is an important transcriptional regulator of hepatocyte and pancreatic function. Hnf4 deletion is embryonically lethal with severe defects in visceral endoderm formation, liver maturation and colon development. However, the precise role of this transcription factor in maintaining homeostasis of the adult intestine remains unclear. Herein, we aimed to elucidate the adult intestinal functions of Hnf4. Methods: A conditional intestinal epithelial Hnf4 knockout mouse was generated. Histological abnormality of the colonic mucosa was assessed by immunodetection and Western. Changes in global gene expression and biological network were analyzed. Results: Hnf4 intestine null mice developed normally until reaching young adulthood. Crypt distortion became apparent in the Hnf4 null colon at 3 months of age followed by focal areas of crypt dropout, increased immune cell infiltrates, crypt hyperplasia and early signs of polyposis later in life. A gene profiling analysis identified cell death and cell cycle related to cancer as the most significant sets of genes altered in the Hnf4 colon null mice. Expression levels of the tight junction proteins claudin 4, 8 and 15 were altered early in the colon epithelium of Hnf4 mutants and correlated with increased barrier permeability to a molecular tracer that does not normally penetrate normal mucosa. Conclusion: These observations support a functional role for Hnf4 in protecting the colonic mucosa against the initiation of the changes resembling inflammatory bowel diseases and polyp formation.
Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice.
No sample metadata fields
View SamplesWe are investigating hepatic transcriptional responses associated with castration and tumorigenic hepatitis induced by Helicobacter hepaticus infection in mature male A/JCr mice
Hepatocellular carcinoma associated with liver-gender disruption in male mice.
No sample metadata fields
View SamplesWe are investigating the transcriptional response of mice infected with Helicobacter hepaticus and links to liver cancer
Genetic susceptibility to chronic hepatitis is inherited codominantly in Helicobacter hepaticus-infected AB6F1 and B6AF1 hybrid male mice, and progression to hepatocellular carcinoma is linked to hepatic expression of lipogenic genes and immune function-associated networks.
No sample metadata fields
View Samples