Prions consist of aggregates of abnormal conformers of cellular prion protein (PrPC). They propagate by recruiting host-encoded PrPC although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. We examined the transcriptomes of prion-resistant revertants, isolated from highly susceptible cells, and identified a gene expression signature associated with susceptibility. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP deposits. Loss-of-function of nine of these genes significantly increased susceptibility. Remarkably, inhibition of fibronectin 1 binding to integrin 8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation rates. This indicates that prion replication may be controlled by MMPs at the ECM in an integrin-dependent manner.
Identification of a gene regulatory network associated with prion replication.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesThe transcription co-factor FOG1 interacts with the chromatin remodeling complex NuRD to mediate gene activation and gene repression during hematopoiesis. We have generated mice with a targeted mutation in the endogenous Fog1 locus that results in an N-ternimal mutation in FOG1 that disrupts the interaction with NuRD.
Pleiotropic platelet defects in mice with disrupted FOG1-NuRD interaction.
Specimen part
View SamplesG1ME cells are GATA1-deficient murine bipotential megakaryocyte/erythrocyte progenitor cells derived from Gata1-negative murine ES cells. In order to assess the impact of GATA1 on gene regulation and cell differentiation, an expression construct was used to transiently produce high levels of GATA1. Cells transduced with this construct or a vector control were harvested at 18 and 42 hours, and gene expression was analyzed using Affymetrix MOE430 version 2 arrays.
Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate.
Cell line
View SamplesPerinatal nutritional imbalances may have long-lasting consequences on health and disease, increasing risk of obesity, insulin resistance, type 2 diabetes or cardiovascular disease. This idea has been conceptualized in the Developmental Origins of Health and Disease Hypothesis (DOHaD). In addition, there is evidence that such early-programmed phenotypes can be transmitted to the following generation(s). It is proposed that, environmentally induced, transmission of disease risk is mediated by epigenetic mechanisms.
In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation.
Specimen part, Treatment
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesAnalysis of erythroid differentiation using Gata1 gene-disrupted G1E ER4 clone cells. Estradiol addition activates an ectopically expressed Gata-1-estrogen receptor fusion protein, triggering synchronous differentiation. 30 hour time course corresponds roughly to late burst-forming unit-erythroid stage (t=0 hrs) through orthochromatic erythroblast stage (t=30 hrs).
Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression.
Specimen part
View Samples