The -amyloid precursor protein APP and the related APLPs, undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that A accumulation is a central trigger for Alzheimer disease (AD), the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPs ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The -secretase generated APP intracellular domain AICD, functions as a transciptional regulator in heterologous reporter assays, although its role for endogenous gene regulation has remained controversial. To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators we performed a DNA microarray transcriptome profiling of the frontal cortex of adult wild type, APP-/-, APLP2-/- and APPs knockin (KI) mice, APP/, expressing solely the secreted APPs ectodomain. Biological pathways affected by the lack of APP family members included regulation of neurogenesis, regulation of transcription and regulation of neuron projection development. Comparative analysis of transcriptome changes and qPCR validation identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity related genes that were down-regulated in knock-out cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including Bace1, Kai1, Gsk3b, p53, Tip60 and Vglut2. Only Egfr was slightly up-regulated in APLP2-/- mice. Comparison of APP-/- and APP/ with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2-/- on different genetic backgrounds revealed that background related transcriptome changes may dominate over changes due to the knockout of a single gene. Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.
Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex.
Sex, Specimen part
View SamplesDespite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and of its proteolytic fragments are still poorly understood. The secreted APPs ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The -secretase generated APP intracellular domain, AICD, functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial. Previously, we have generated APPs knockin (KI) mice expressing solely the secreted ectodomain APPs. Here, we generated double mutants (APPs-DM) by crossing APPs-KI mice onto an APLP2-deficient background and show that APPs rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPs-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP. To gain further mechanistic insight into which domains/proteolytic fragments are crucial for hippocampal APP/APLP2 mediated functions, we performed a DNA microarray transcriptome profiling of prefrontal cortex and hippocampus of adult APLP2-KO (APLP2-/-) and APPs-DM mice (APP/APLP2-/- mice).Interestingly, this analysis failed to reveal major genotype-related transcriptional differences. Expression differences between cortex and hippocampus were, however, readily detectable.
APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP.
Sex, Specimen part
View Samples