Our laboratory wanted to define the transcription profile of aged skeletal muscle. For this reason, we performed a triplicate microarray study on young (3 weeks) and aged (24 months) gatrocnemius muscle from wild-type C57B16 Mice
Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing.
Sex
View SamplesThe endocytic receptor megalin constitutes the main pathway for clearance of plasma proteins from the glomerular filtrate in the proximal tubules. However, little is know about the mechanisms that control receptor activity. A widely discussed hypothesis states that the intracellular domain (ICD) of megalin, released upon ligand binding, acts as a transcription regulator to suppress receptor expression - a mechanism proposed to safeguard the proximal tubules from protein overload. Here, we have put this hypothesis to the test by generating a mouse model co-expressing the soluble ICD and the full-length receptor. Despite pronounced expression in the proximal tubules, the ICD failed to exert any effects on renal proximal tubular function such as megalin expression, protein retrieval, or renal gene transcription. Thus, our data argue that the ICD does not play a role in regulation of megalin activity in vivo in the proximal tubules.
The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo.
Sex, Age, Specimen part
View SamplesAnalysis of hematopoietic stem cells (HSC, LSK Flt3-) and myeloid progenitors (MP, LK CD34+) sorted from wildtype and Dnmt1 hypomorph mice
DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
Specimen part
View SamplesInterleukin-33 (IL-33) is elevated in afflicted tissues of patients with mast cell-dependent chronic allergic diseases. Based on its acute effects on mouse mast cells (MCs), IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of chronic IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. We now find that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to antigen. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hypo-responsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation including antigen-mediated calcium mobilization and cytoskeletal reorganization; potentially as a consequence of down-regulation of the expression of PLCg1 and Hck. These findings suggest that IL-33 may play a protective, rather than a causative role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to down-regulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.
IL-33 induces a hyporesponsive phenotype in human and mouse mast cells.
Specimen part, Treatment
View SamplesThe role of Tfr1 in non-erythroid tissues remains elusive due to the embryonic lethality of the Tfr1 global knockout mouse model. To bypass this problem, we generated a mouse model in which Tfr1 was conditionally deleted in intestinal epithelial cells (IECs). These mice developed severe IEC disruption, characterized by blunted villi, edema, loss of proliferative intervillus IECs, accumulation of lipids, and early neonatal lethality. Strikingly, a wide range of genes associated with epithelial-to-mesenchymal transition were highly upregulated in IEC lacking Tfr1. Additionally, candidate vesicular transport and sorting genes implicated in lipid absorption and trafficking were downregulated. Surprisingly, the presence of a mutant allele of Tfr1, which is unable to bind to iron-loaded transferrin, was capable of rescuing the lethality, intestinal epithelial homeostasis, and proliferation in a majority of the Tfr1 conditional knockout mice.
Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.
Age, Specimen part, Disease
View SamplesLiver global gene expression patterns of 9 GNMT-knockout mice histopathologically determined to have non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) together with 10 MAT1A-knockout mice histopathologically determined to have steatosis and NASH. All these have their respective wild type patterns. These were analyzed to define signatures to study the pathogenesis of NAFLD-derived HCC, explore which subtypes of cancers can be investigated using mouse models and define a signature of HCC differential survival that can be used to characterize HCC subtypes of different survival derived from mixed etiologies.
Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.
Age, Specimen part, Disease
View SamplesZebrafish have the remarkable ability to regenerate body parts including the heart, spinal cord and fins by a process referred to as epimorphic regeneration. Recent studies have illustrated that similar to adult zebrafish, early life stage-larvae also possess the ability to regenerate the caudal fin. A comparative genomic analysis was used to determine the degree of conservation in gene expression among the regenerating adult caudal fin, adult heart and larval fin. Results indicate that these tissues respond to amputation/injury with strikingly similar genomic responses. Comparative analysis revealed raldh2, a rate-limiting enzyme for the synthesis of Retinoic acid (RA), as one of the highly induced genes across the three regeneration platforms.
Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration.
No sample metadata fields
View SamplesFollowing the identification of a critical time window of Blood Brain Barrier formation in the mouse embryo, we aimed to identify genes important for barriergenesis. To this end, we isolated cortical and lung E13.5 endothelial cells and compared expression between the two populations.
Mfsd2a is critical for the formation and function of the blood-brain barrier.
Specimen part
View SamplesSkeletal muscle atrophy is a consequence of many diseases, environmental insults, inactivity, age and injury. Atrophy is characterized by active degradation and removal of contractile proteins and a reduction in fiber size. Animal models have been extensively used to identify pathways leading to atrophic conditions. Here we have used genome-wide expression profiling analysis and quantitative PCR to identify the molecular changes that occur in two clinically relevant animal mouse models of muscle atrophy, hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7 and 14 days after insult. The total amount of muscle loss as measured by wet weight and muscle fiber size was equivalent between models, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tentomy resulted in the regulation of significantly more mRNA transcripts then casting. Analysis of the regulated genes and pathways suggest that the mechanism of atrophy is distinct between these models. The degradation following casting appears ubiquitin-proteasome-mediated while degradation following tenotomy appears lysosomal and matrix-metalloproteinase (MMP)-mediated. This data suggests that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat the atrophy seen under different conditions.
Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.
Sex, Specimen part, Treatment, Time
View Samples