refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE31666
Identification of a molecular network of DNA damage-induced neural cell death
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

DNA damage plays a major role in neural cell death by necrosis and/or apoptosis. However, our understanding of the molecular mechanisms of neural cell death remains still incomplete. To acquire a global understanding of the various mediators related to DNA damage-induced neural cell death pathways, we performed a whole genomic wide screen in neural stem cells by using a siRNA library. We identified 80 genes required for DNA damage-induced cell death. 14 genes (17.5%) are directly related to cell death and/or apoptosis. 66 genes have not been previously directly linked to DNA damage-induced cell death. Using an integrated approach with functional and bioinformatics analysis, we have uncovered a molecular network containing several partially overlapping and interconnected pathways and/or protein complexes that are required for DNA damage-induced neural cell death. The identification of the network of neural cell death mediators will greatly enhance our understanding of the molecular mechanisms of neural cell death and provide therapeutic targets for nervous system disorders.

Publication Title

High-Content Genome-Wide RNAi Screen Reveals <i>CCR3</i> as a Key Mediator of Neuronal Cell Death.

Alternate Accession IDs

E-GEOD-31666

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68984
The transferrin receptor is required for intestinal epithelial homeostasis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The role of Tfr1 in non-erythroid tissues remains elusive due to the embryonic lethality of the Tfr1 global knockout mouse model. To bypass this problem, we generated a mouse model in which Tfr1 was conditionally deleted in intestinal epithelial cells (IECs). These mice developed severe IEC disruption, characterized by blunted villi, edema, loss of proliferative intervillus IECs, accumulation of lipids, and early neonatal lethality. Strikingly, a wide range of genes associated with epithelial-to-mesenchymal transition were highly upregulated in IEC lacking Tfr1. Additionally, candidate vesicular transport and sorting genes implicated in lipid absorption and trafficking were downregulated. Surprisingly, the presence of a mutant allele of Tfr1, which is unable to bind to iron-loaded transferrin, was capable of rescuing the lethality, intestinal epithelial homeostasis, and proliferation in a majority of the Tfr1 conditional knockout mice.

Publication Title

Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis.

Alternate Accession IDs

E-GEOD-68984

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE63068
Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic fatty liver disease
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.

Alternate Accession IDs

E-GEOD-63068

Sample Metadata Fields

Age, Specimen part, Disease

View Samples
accession-icon GSE63027
Expression data from GNMT and MAT1A knockout models that develop all the stages of non-alcoholic fatty liver disease including hepatocellular carcinoma [GNMT_MAT1A_3&8_months]
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon

Description

Liver global gene expression patterns of 9 GNMT-knockout mice histopathologically determined to have non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) together with 10 MAT1A-knockout mice histopathologically determined to have steatosis and NASH. All these have their respective wild type patterns. These were analyzed to define signatures to study the pathogenesis of NAFLD-derived HCC, explore which subtypes of cancers can be investigated using mouse models and define a signature of HCC differential survival that can be used to characterize HCC subtypes of different survival derived from mixed etiologies.

Publication Title

Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.

Alternate Accession IDs

E-GEOD-63027

Sample Metadata Fields

Age, Specimen part, Disease

View Samples
accession-icon GSE10188
Comparative genomic analysis between adult and larval fin regeneration
  • organism-icon Danio rerio
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Zebrafish have the remarkable ability to regenerate body parts including the heart, spinal cord and fins by a process referred to as epimorphic regeneration. Recent studies have illustrated that similar to adult zebrafish, early life stage-larvae also possess the ability to regenerate the caudal fin. A comparative genomic analysis was used to determine the degree of conservation in gene expression among the regenerating adult caudal fin, adult heart and larval fin. Results indicate that these tissues respond to amputation/injury with strikingly similar genomic responses. Comparative analysis revealed raldh2, a rate-limiting enzyme for the synthesis of Retinoic acid (RA), as one of the highly induced genes across the three regeneration platforms.

Publication Title

Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration.

Alternate Accession IDs

E-GEOD-10188

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56777
Expression data of E13.5 mouse Blood Brain Barrier and lung endothelial cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Following the identification of a critical time window of Blood Brain Barrier formation in the mouse embryo, we aimed to identify genes important for barriergenesis. To this end, we isolated cortical and lung E13.5 endothelial cells and compared expression between the two populations.

Publication Title

Mfsd2a is critical for the formation and function of the blood-brain barrier.

Alternate Accession IDs

E-GEOD-56777

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14678
Expression Profile of Skeletal Muscle from Young and Aged C57B1/6 Mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Our laboratory wanted to define the transcription profile of aged skeletal muscle. For this reason, we performed a triplicate microarray study on young (3 weeks) and aged (24 months) gatrocnemius muscle from wild-type C57B16 Mice

Publication Title

Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing.

Alternate Accession IDs

E-GEOD-14678

Sample Metadata Fields

Sex

View Samples
accession-icon GSE25908
Distinct Protein Degradation Induced by Different Disuse Models of Skeletal Muscle Atrophy
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon

Description

Skeletal muscle atrophy is a consequence of many diseases, environmental insults, inactivity, age and injury. Atrophy is characterized by active degradation and removal of contractile proteins and a reduction in fiber size. Animal models have been extensively used to identify pathways leading to atrophic conditions. Here we have used genome-wide expression profiling analysis and quantitative PCR to identify the molecular changes that occur in two clinically relevant animal mouse models of muscle atrophy, hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7 and 14 days after insult. The total amount of muscle loss as measured by wet weight and muscle fiber size was equivalent between models, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tentomy resulted in the regulation of significantly more mRNA transcripts then casting. Analysis of the regulated genes and pathways suggest that the mechanism of atrophy is distinct between these models. The degradation following casting appears ubiquitin-proteasome-mediated while degradation following tenotomy appears lysosomal and matrix-metalloproteinase (MMP)-mediated. This data suggests that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat the atrophy seen under different conditions.

Publication Title

Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.

Alternate Accession IDs

E-GEOD-25908

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE15181
Expression profiles of cancer cells with anchorage-independent growth ability
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Alternate Accession IDs

E-GEOD-15181

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15161
Expression data from retroviral vector-infected immortalized mouse embryonic fibroblasts (MEFs)
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

Cultured cancer cells exhibit substantial phenotypic heterogeneity when measured in a variety of ways such as sensitivity to drugs or the capacity to grow under various conditions. Among these, the ability to exhibit anchorage-independent cell growth (colony forming capacity in semisolid media) has been considered to be fundamental in cancer biology because it has been connected with tumor cell aggressiveness in vivo such as tumorigenic and metastatic potentials, and also utilized as a marker for in vitro transformation. Although multiple genetic factors for anchorage-independence have been identified, the molecular basis for this capacity is still largely unknown. To investigate the molecular mechanisms underlying anchorage-independent cell growth, we have used genome-wide DNA microarray studies to develop an expression signature associated with this phenotype. Using this signature, we identify a program of activated mitochondrial biogenesis associated with the phenotype of anchorage-independent growth and importantly, we demonstrate that this phenotype predicts potential for metastasis in primary breast and lung tumors.

Publication Title

Anchorage-independent cell growth signature identifies tumors with metastatic potential.

Alternate Accession IDs

E-GEOD-15161

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0