refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 37 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE36437
Expression data from caudal artery of Notch3WT and Notch3KO mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch3 is a transmembrane receptor which is critically important for the structure and myogenic response of distal arteries, particularly cerebral arteries. After activation of the receptor, the intracellular domain translocates in the nucleus to activate target genes transcription.

Publication Title

Transcriptome analysis for Notch3 target genes identifies Grip2 as a novel regulator of myogenic response in the cerebrovasculature.

Alternate Accession IDs

E-GEOD-36437

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15268
Cell-context dependent Notch target genes
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling regulates a variety of developmental cell fates decisions in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the genes in the respective tissues that are directly activated by Notch.

Publication Title

Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors.

Alternate Accession IDs

E-GEOD-15268

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6867
Expression data in the absence of Notch1 in hair follicles
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch1 deficient hair matrix keratinocytes have lower mitotic rates, resulting in smaller follicles with fewer cells. In addition, the ratio of melanocytes to keratinocytes is greatly reduced. Microarray was performed to study downstream mechanism of Notch1-deficiency

Publication Title

Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes.

Alternate Accession IDs

E-GEOD-6867

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51628
Effects of acute Notch activation on the mammary epithelial compartment in vivo
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is widely implicated in mouse mammary gland development and tumorigenesis. To investigate the effects of acute activation of Notch signaling in the mammary epithelial compartment, we generated bi-transgenic MMTV-rtTA; TetO-NICD1 (MTB/TICNX) mice that conditionally express a constitutively active NOTCH1 intracellular domain (NICD1) construct in the mammary epithelium upon doxycycline administration.

Publication Title

Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy.

Alternate Accession IDs

E-GEOD-51628

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE15232
A Regulatory Pathway Involving Notch1/-Catenin/Isl1 Determines Cardiac Progenitor Cell Fate
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The regulation of multipotent cardiac progenitor cell (CPC) expansion and subsequent differentiation into cardiomyocytes, smooth muscle, or endothelial cells is a fundamental aspect of basic cardiovascular biology and cardiac regenerative medicine. However, the mechanisms governing these decisions remain unclear. Here, we show that Wnt/-Catenin signaling, which promotes expansion of CPCs, is negatively regulated by Notch1-mediated control of phosphorylated -Catenin accumulation within CPCs, and that Notch1 activity in CPCs is required for their differentiation. Notch1 positively, and -Catenin negatively, regulated expression of the cardiac transcription factors, Isl1, Myocd and Smyd1. Surprisingly, disruption of Isl1, normally expressed transiently in CPCs prior to their differentiation, resulted in expansion of CPCs in vivo and in an embryonic stem (ES) cell system. Furthermore, Isl1 was required for CPC differentiation into cardiomyocyte and smooth muscle cells, but not endothelial cells. These findings reveal a regulatory network controlling CPC expansion and cell fate that involve unanticipated functions of -Catenin, Notch1 and Isl1 that may be leveraged for regenerative approaches involving CPCs.

Publication Title

A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate.

Alternate Accession IDs

E-GEOD-15232

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11723
Role of Notch signaling on hematopoietic stem cell differentiation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Although Notch signaling has been clearly implicated in lymphoid differentiation, its role in myeloid lineages differentiation is unclear.

Publication Title

Notch signaling specifies megakaryocyte development from hematopoietic stem cells.

Alternate Accession IDs

E-GEOD-11723

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55203
Gene expression changes in brain vascularture in Notch3 knockout mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the progressive loss of VSMC in the Notch3-/- mouse on blood vessel integrity in the central nervous system

Publication Title

Notch3 is necessary for blood vessel integrity in the central nervous system.

Alternate Accession IDs

E-GEOD-55203

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15587
Identification of Metastasis-prone Lung Adenocarcinoma Cell Population That Is Sensitive to Notch Inhibition
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Tumor cells that give rise to metastatic disease are a primary cause of cancer-related death and have not been fully elucidated in patients with lung cancer. Here, we addressed this question by using tissues from a mouse that develops metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. We identified a metastasis-prone population of tumor cells that differed from those with low metastatic capacity on the basis of having sphere-forming capacity in Matrigel cultures, increased expression of CD133 and Notch ligands, and relatively low tumorigenicity in syngeneic mice. Knockdown of jagged1 or pharmacologic inhibition of its downstream mediator phosphatidylinositol 3-kinase abrogated the metastatic but not the tumorigenic activity of these cells. We conclude from these studies on a mouse model of lung adenocarcinoma that CD133 and Notch ligands mark a population of metastasis-prone tumor cells and that the efficacy of Notch inhibitors in metastasis prevention should be explored.

Publication Title

The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice.

Alternate Accession IDs

E-GEOD-15587

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46726
In Vivo Mapping of Notch Pathway Activity in Normal and Stress Hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Alternate Accession IDs

E-GEOD-46726

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE31643
Conditional ablation of the Notch2 receptor in the ocular lens
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors has not been previously investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, and cataracts. Notch2 mutants also had a persistent lens stalk phenotype at E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2) and Trp63 (p63) that negatively regulates Wnt signaling. Although removal of Notch2 phenocopied the increased proportion of fiber cells of Rbpj and Jag1 conditional mutant lenses, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. Instead, we found that the Notch2 normally blocks progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-31643

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0