Description
The MLL1 histone methyltransferase gene undergoes many distinct chromosomal rearrangements to yield poor-prognosis leukemia. The remaining wild-type allele is most commonly, but not always, retained. To what extent the wild-type allele contributes to leukemogenesis is unclear. Here we show using rigorous, independent animal models that endogenous MLL1 is dispensable for MLL-rearranged leukemia. Potential redundancy was addressed by co-deleting the closest paralog, Mll2. Surprisingly, Mll2 deletion alone had a significant impact on survival of MLL-AF9-transformed cells and additional Mll1 loss further reduced viability and proliferation. We show that MLL1/MLL2 collaboration is not through redundancy but regulation of distinct pathways. These findings highlight the relevance of MLL2 as a drug target in MLL-rearranged leukemia and suggest its broader significance in AML.